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Abstract

Vibrational Stark effects, which are the effects of electric fields on vibrational
spectra, were measured previously for the C-N stretch mode of several small nitriles,

yielding difference dipole moments, difference polarizabilities, and transition
polarizabilities for each species [Andrews, S.S.; Boxer, S.G. J. Phys. Chem. A 2000, 104,

11853].  This paper explains the physical origins of the observed Stark effects using two

theoretical models and, in the process, computes several molecular parameters for each
nitrile.  A model with a single vibrational mode, developed with first and second order

perturbation theory, is found to explain most of the experimental Stark effects.  Since it
cannot account for coupling between modes, which is ubiquitous and important for

resonant vibrations and for combination mode absorption, another model is developed

which considers multiple vibrational modes and three spatial degrees of freedom.  It is
found that difference dipole moments arise from a combination of mechanical

anharmonicity and electronic perturbations of chemical bonds, where the two factors

have about equal magnitudes for nitriles.  Transition polarizabilities are dominated by the
effects of electronic polarizability of the sample molecule, which alters the partial

charges on atoms in an electric field.  For overtone and combination transitions, Stark
shifts are predicted to be the sums of the shifts of the component transitions.  Stark

effects of resonant transitions are predicted to be linear combinations of the effects for the

basis states, plus a coupling term, explaining observed Stark effects of Fermi resonant
bands.

Introduction

Molecular vibrations are sensitive to the local electrostatic field, leading to field-
induced changes in the infrared absorption spectrum, called the vibrational Stark effect.

It has recently become relatively simple to measure these effects for a wide variety of
condensed phase samples, where results include those for small nitriles dissolved in

frozen 2-methyl-tetrahydrofuran1 and carbon monoxide2 and nitric oxide3 bound to the
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heme iron in myoglobin.  Knowledge of the sensitivity of a vibrational frequency to an

electric field, the Stark tuning rate, calibrates the transition for use as an empirical probe

of local electric fields2.  Vibrational Stark effects can also be used to lend insight into the

physics of molecular vibrations, which is the focus of this paper.

Several theoretical approaches are available for studying vibrational Stark effects.

For very small molecules, ab initio methods have been used to calculate vibrational

frequencies and intensities in varying electric fields4-8.  While the best results are likely

to be very accurate for vapor phase samples9, they are difficult to extend to either larger

molecules or to condensed phase samples; also they have not been in good agreement

with experiment1,10.  The semi-empirical AM1 method has been shown to yield results in

good agreement with ab initio theory11, which allows calculations for more complex
systems but does not improve the accuracy.  Starting from a less fundamental level, the

classic “balls and springs” model can also be used, in which field effects are given in

terms of chemical bond force constants and bond anharmonicities.  This standard

method12-18 is used below and yields results that are easy to interpret and that are readily

generalizable to large molecules and condensed phase samples.  It also serves as a useful

intermediate level of theory, connecting parameters that can be measured experimentally
with those that can be calculated from first principles.

In a previous paper1, a complete set of six Stark parameters was reported for
acetonitrile and 4-chloro-benzonitrile, and three of the parameters were reported for a

variety of other small nitriles.  The parameters are the dominant terms of the difference

dipole moment, ∆m, the difference polarizability, ∆a, and the transition polarizability, A.

These parameters, along with the zero field transition dipole moment, M , and the
transition hyperpolarizability, B , are defined by expansions of the field-induced

vibrational frequency shift and the vibrational transition dipole moment in terms of the
electric field, F:

  

† 

Dn F( ) = -
1
hc

Dm ⋅ F +
1
2

F ⋅ Da ⋅ F + L
Ê 
Ë 
Á 

ˆ 
¯ 
˜ (1)

  
M F( ) = M + A ⋅ F + F ⋅ B ⋅F +L (2)
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M  is used to define the molecular z axis.  We showed that ∆m values were largely

explained by bond anharmonicity but several questions were left unanswered, such as (i)

does this relationship stand up to a more thorough treatment, and what accounts for the
remainder of ∆m, (ii) what are the physical origins of ∆a and A, (iii) can B be estimated,

and is it really appropriate to ignore it, (iv) how does coupling between modes affect

Stark effects,  (v) what would cause the vector and matrix Stark parameters to have

components that are not parallel to the transition dipole moment, and (vi) what should be
expected for Fermi resonant transitions?  These questions are addressed below.  The

results are useful both for a more thorough understanding of the current experimental
data and for the prediction of Stark effects of other vibrational transitions.

Theory

A normal mode analysis of the vibrations of a molecule, including only lowest

order terms, yields a set of vibrational frequencies and normal modes19,20.  In this zeroth

order approximation the modes may be considered as uncoupled quantum harmonic
oscillators, each with uniformly spaced energy levels and transition dipoles that only

allow transitions between adjacent states.  However, interatomic forces are not perfectly

harmonic, having both anharmonicity in the normal modes and anharmonic coupling
between the modes.  Among other things, anharmonicities lead to intramolecular energy

redistribution21, overtone and combination mode absorption19, vibrational

solvatochromism22, and Fermi resonance23.  They also contribute to vibrational Stark

effects, as shown below and elsewhere13,14,17,18.

Molecular vibrations are affected by a weak electrostatic field in two ways15:
mechanical effects arise from electrical forces on atoms with partial electric charges, and

electronic effects arise from the interaction of the field with the molecular electron cloud,
which perturbs chemical bonds and alters the charge distribution in the molecule.  These

effects are made quantitative with the perturbation models given below.

Single mode theory.  For vibrations in which the normal mode is highly localized to
just a pair of atoms, it is possible to ignore coupling to other vibrational modes, at least as

a first approximation.  In this model, the atoms are separated a distance x away from their
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equilibrium distance, the reduced mass is m, and the effective electric charge is q24.  The

harmonic vibrational frequency, w, is equal to (k/m)1/2, where k is the quadratic force

constant.  To include both mechanical and electronic effects, the potential energy, V, is
expanded in terms of the atomic separation and the component of the electric field that is

parallel to the bond, F.  The expansion can be expressed compactly with a matrix,

† 

V = 1 F F2[ ]

0 k
2

v3 v4

-q ¢ v 2 ¢ v 3 0

¢ ¢ v 1 ¢ ¢ v 2 0 0

È 

Î 

Í 
Í 
Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 
˙ 
˙ 

x
x2

x3

x4
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Í 
Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 
˙ 

(3)

The terms equal to k/2 and –q are non-zero for a simple harmonic oscillator; for the

perturbation parameters, the number of primes gives the power of the field dependence

and the subscript gives the power of the x dependence.  The terms in the lower right
corner, as well as higher order terms that are not shown, are set to 0 since they are

expected to be negligible.  In this standard expansion, the rows of the matrix give the

potential function, the dipole function, and the polarizability function, respectively16.

An alternate view of the double expansion is that the columns of the matrix give the

field dependencies of the linear, quadratic, and anharmonic force constants.  Using

perturbation theory25, we solved for the eigenstate energies and for the transition dipole

moments between the states of an anharmonic oscillator.  Results were carried out to first

order in the quartic anharmonicity and to second order in the cubic anharmonicity.  The
reason for going to second order for some terms is that the second order cubic

anharmonicity term is typically larger than the first order quartic anharmonicity term.
This relationship can be seen in many ways: the first overtone transition energy is

invariably less than twice the fundamental transition energy, despite v4 being positive for

most vibrations; by Taylor expansion of a Morse potential26 it is found that v4≈v3
2/k; and

by substitution of experimental values in the equations below.  Force constants and the
effective charge were then expanded in terms of the field, using the molecular parameters

defined in eq. 3.  Using Mathematica software27, the results were expressed as a series in
F, yielding the Stark parameters defined by eqs. 1 and 2.  As this model considers only a
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single normal mode, it predicts that all Stark effect parameters are parallel to the normal

coordinate.  Carried out to second order in v3, v2', and v1" and first order in v4, v3', and v2",
the results for transitions between the ground and first excited states are:

  

DE = hw 1 +
3hwv4

k 2
-

15hwv3
2

2k 3

Ê 
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¯ 
˜ (4)

  

Dm = hw -
3qv3

k 2
-

¢ v 2
k

Ê 

Ë 
Á 

ˆ 

¯ 
˜ (5)

  

Da || = hw -
12q2v4

k 3
-

6q ¢ v 3
k 2

-
2 ¢ ¢ v 2
k

+
18q2v3

2

k 4
+

18qv3 ¢ v 2
k 3

+
¢ v 2
2

k 2
+

6v3 ¢ ¢ v 1
k 2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ (6)
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(9)

It has been pointed out that while ∆m is typically called the difference dipole

moment, it is not actually the same as the difference in dipole moments between the

ground and excited states1,18.  This can be seen in eq. 5; the first term gives the effect of
anharmonicity and leads to an actual difference in dipole moments, while the second term

gives the field dependence of the harmonic force constant and does not affect the dipole
moment of either the ground or the excited state.  Using the language introduced above,

the first term represents the mechanical contribution to the Stark effect while the second

term represents the electronic contribution.  Similarly, most terms in ∆a|| do not represent

a physical difference in the polarizability of the two states.  It would be more accurate to
call ∆m and ∆a|| the linear and quadratic Stark shift rates, but the traditional terminology

is retained throughout this paper.
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The terms in ∆m and A || are expected to be relatively large, since the perturbation

parameters are the low-order terms of the Taylor expansion.  In contrast, ∆a||, B ||, and the

perturbation components of ∆E and M are expected to be much smaller, since all of their

terms include either higher order terms of the Taylor expansion or products of low-order
terms.  While they are not shown above or considered elsewhere, it was found that the F3

terms of eqs. 1 and 2, the difference hyperpolarizability and transition

hyperpolarizability, respectively, are zero to consistent order in the perturbation
parameters, justifying the fact that they are ignored.

Finally, it can be seen that A|| is closely related to ∆m,

A|| =
MDm

2DE
-

M ¢ ¢ v 1
q

(10)

The first term arises from perturbations of quantum eigenstates by the electric field, while
the second term represents the field dependence of the effective charge due to electronic

polarizability.  Eq. 10 allows v1" to be calculated from experimental data with minimal
assumptions for other parameters.

Multi-mode theory.  The single mode theory given above is expected to capture the

most important aspects of vibrational Stark effects, but is incomplete since it ignores the
coupling of different vibrational modes by anharmonicity.  It also does not allow the

interpretation of angle-dependent data, such as whether ∆m can be non-parallel to M and

which elements of A are expected to be non-zero.  Thus, the theory was re-written for an
arbitrary set of N vibrational modes.  The derivation of the multi-mode equations is

completely analogous to the single mode theory but is more complex, since most scalars

are replaced with vectors, matrices, or higher-order tensors.  Also, the coordinate system
requires more attention to account for the multiple modes, for mixing of modes, and for

the three spatial degrees of freedom.  Due to the increased complexity, perturbation
theory is carried out to lower order, with the result that cubic anharmonicity is considered

to first order and quartic anharmonicity is ignored.

As a starting point, it is assumed that normal coordinates have been found for the
system of interest in the absence of an electric field and that there is no degeneracy.



The Measurement and Physics of Vibrational Stark Effects 117

Following the notation of Wilson et al.19, the mass-weighted normal coordinates are

given by Qi, while the linear force constants are fi, the quadratic force constants are fij, and
cubic force constants are fijk.  These are fully symmetric tensors, meaning, for example,

that fij=fji and fijk=fjki=fkji.  In the absence of an electric field, the force constants are in a
normal coordinate system so fi and the off-diagonal terms of fij are all zero, and the

normal mode frequencies are (fii)1/2.  The potential and kinetic energies are28

V = V0 + fiQi +
1
2

fijQiQj +
1
6

fijkQiQjQk (11)

† 

T =
1
2

˙ Q i ˙ Q i (12)

The permanent dipole moment of the molecule in the absence of a field is given by the

three dimensional vector m.  The change of the molecular dipole moment upon motion in

the i’th normal mode, called a dipole gradient, turns out to be more useful here and is

analogous to the effective charge considered in the single mode situation,

† 

m i ≡
∂m
∂Qi

(13)

Upon applying an external electric field, all the force constants, including off-

diagonal elements, change slightly due to electronic perturbations of the chemical bonds.

Also, the linear force constants become non-zero because of the interaction of the electric
field with the dipole gradients.  Finally, the dipole gradients themselves are functions of

the electric field, because electronic polarizability changes the partial charges on the
atoms.  These shift the equilibrium point of the system, which physically represents an

adjustment of the equilibrium bond lengths to achieve the lowest energy configuration.

The shifts are approximately

Qi° ≡ -
fi

fii

(14)

The potential energy, with the coordinates shifted by Qi°, is rewritten as
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V = V0 +
1
2

fiQi° +
1
6

fijkQi°Qj°Qk°
Ê 

Ë 
Á 

ˆ 

¯ 
˜ +

1
2

fijkQj°Qk°
Ê 

Ë 
Á 

ˆ 

¯ 
˜ Qi - Qi°( )

     +
1
2

fij + fijkQk°( ) Qi - Qi°( ) Qj - Qj °( ) +
1
6

fijk Qi - Qi°( ) Qj - Qj°( ) Qk - Qk°( )
(15)

The quadratic term is no longer diagonal because of the coordinate shift and electronic
perturbations.  To first order, the off-diagonal elements do not contribute to the

vibrational eigenvalues, li, but do contribute to the eigenvectors, aij, unitless terms which

rotate the normal modes to account for the electric field:

li = fii + fiikQk° (16)

† 

aij =

1 i = j
fij + fijkQk °

li - l j

i ≠ j

Ï 

Ì 
Ô 

Ó 
Ô 

(17)

A new set of notation is introduced for the shifted and rotated coordinate system.  The

variables qi are the mass-weighted normal coordinates in a field, VF is the energy at the

new origin, and the new force constants are ki, kij, and kijk:

qj ≡ Qi - Qi°( )aij (18)

VF ≡ V0 +
1
2

fiQi° +
1
6

fijkQi°Qj°Qk ° (19)

kl ≡
1
2

fijkQj °Qk °ail (20)

klm ≡ fij + fijkQk °( )aila jm (21)

klmn ≡ fijkaila jmakn (22)

The new definitions simplify the potential expression to resemble eq. 11,

V = VF + kiqi +
1
2

kijqiq j +
1
6

kijkqiq jqk (23)
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 Now, the linear force constants are proportional to fijk, allowing them to be treated as

perturbation parameters, and the off-diagonal elements of the quadratic term are zero to
first order.

Using perturbation theory to solve for the quantum energies of the system, it is
found that neither the linear nor the cubic terms couple energy levels to first order.  Using

ni as the quantum number of the i’th mode, the quantum energy levels are just the sum of

the energies for each separate normal mode,

  

E F( ) = VF + hkii
1 / 2 ni +

1
2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ (24)

Transition dipoles are defined as the bracket mi(F)·yinitial|Qi|yfinalÒ, where mi(F) is a field

dependent dipole gradient.  For excitation by a single quantum level in the i’th normal
mode, it is found again that the linear and cubic terms do not enter into the result to first

order.  However, the coordinate rotation serves to mix the dipole gradients,

  

† 

Mni Æ ni +1 F( ) = aijm j F( )
h ni +1( )

2kii
1/2 (25)

Excitation by two quantum levels, yielding either overtone absorption or combination

mode absorption, is forbidden in the absence of anharmonicity, but is possible in the

anharmonic system considered here.  These transition dipoles are, respectively,

  

† 

Mni Æ ni + 2 F( ) =
3ha jkm k F( )kiij

4kii
1/ 2k jj

1/2
1

2kii
1/ 2 - k jj

1/2 -
1

2kii
1/ 2 + k jj

1/ 2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ ni +1( ) ni + 2( ) (26)

  

† 

M ni Æ ni +1
n j Æ n j +1

F( ) =
3haklm l F( )kijk

2kii
1/4 k jj

1/4 kkk
1/2

1
kii

1/ 2 + k jj
1/ 2 - kkk

1/2 -
1

kii
1/ 2 + k jj

1/ 2 + kkk
1/ 2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ ni +1( ) n j +1( )

(27)

Terms worth noting in eqs. 27 and 28 are the ones with frequency differences in the
denominators; these give rise to strong intensity sharing between nearby transitions,

which is one aspect of Fermi resonance.  Since non-degenerate perturbation theory was

used, the equations are progressively less accurate as the frequencies approach each
other.
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As in the single mode theory, the fi, fij, and fijk force constants are expanded in terms

of the electric field,

† 

V = 1 F F2[ ]
0 vij vijk

-m i ¢ v ij 0
¢ ¢ v i 0 0

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

Qi

QiQj

QiQjQk

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

(28)

Since normal coordinates were assumed at the beginning, vij is diagonal.  The quadratic
force constants, using mass-weighted coordinates, are k i=2vii and the harmonic

frequencies are wi=(ki)1/2.  Substituting for kii in eq. 24 yields the field dependent energy

levels,

  

† 

E = VF + hw i 1 +
3viijm j

k ik j
F +

¢ v ii
k i

F
Ê 

Ë 
Á 

ˆ 

¯ 
˜ ni +

1
2

Ê 
Ë 

ˆ 
¯ (29)

This can be simplified to give the Stark shift for the excitation of the i’th mode by one

quantum level,

  

† 

Dmni Æ ni +1 = -hw i

3viijm j

k ik j
+

¢ v ii
k i

Ê 

Ë 
Á 

ˆ 

¯ 
˜ (30)

To first order, there is no difference polarizability.  Not surprisingly, the difference
dipole, eq. 30, is similar to its single mode analog in eq. 5.  As before, the first term

represents the mechanical contribution, from the force of the field on charged atoms.

Since the shift of equilibrium positions is typically not along a single normal coordinate,
this term involves a sum over the normal modes.  The second term, representing

electronic interactions, is a vector since different field directions may have different

effects on a quadratic force constant.  Eq. 29 is a more general result and shows that Stark
shifts for overtone transitions and combination transitions are the sums of the shifts for

single transitions.  For example, a first overtone absorption is expected to have twice the
Stark shift of the corresponding fundamental absorption.  This property was also found in

the single mode analysis for both ∆m and ∆a ||, to the higher-order theory used in the

previous section.
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Substitutions in eq. 25 yield the transition dipole and transition polarizability for

excitation by one quantum level,

  

† 

Mni Æ ni +1 = m i

hw i ni +1( )
2k i

(31)

  

† 

A n i Æ n i + 1 =
hw i ni +1( )

2k i

-
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T

2k i

-
3m iviijm j

T

2k ik j

- ¢ ¢ v i + m k

2k j ¢ v ik
T + 6vijkm j

T

k j k i -k k( )k ≠i
Â

È 

Î 

Í 
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˘ 

˚ 

˙ 
˙ 

(32)

The T symbols in eq. 32 denote vector transposes, with the result that all vector products

are outer products and A is a matrix, as it should be.  In the absence of a field (eq. 31),
the transition dipole is parallel to the dipole gradient.  The terms in the transition

polarizability were seen in the single mode analog, eq. 8, with the exception of the final

sum, which arises from the coordinate rotation and the corresponding mixing of dipole
gradients.  While it was seen that the Stark shifts for overtone and combination

transitions are the sums of the shifts for single transitions, this relationship does not hold
for the transition dipole relationships.  In the absence of a field, these transition dipoles

are

  

† 

Mni Æ ni + 2 F( ) =
3hm jkiij

4w iw j

1
2w i -w j

-
1

2w i + w j

Ê 

Ë 
Á 

ˆ 

¯ 
˜ ni +1( ) ni + 2( ) (33)

  

† 

M ni Æ ni +1
n j Æ n j +1

F( ) =
3hm kkijk

2w i
1/2w j

1/ 2wk

1
w i +w j - wk

-
1

w i +w j +wk

Ê 

Ë 
Á 

ˆ 

¯ 
˜ ni +1( ) n j +1( ) (34)

Transition polarizabilities for overtone and combination transitions are zero to first order.

Resonant transitions.  So far, it has been assumed that the energy levels are non-

degenerate.  However, even small molecules typically have enough vibrational modes or
enough symmetry that degeneracy is common.  For degenerate or nearly degenerate

systems not in an electric field, the fij matrix has two or more diagonal elements that are

the same or nearly the same, and off-diagonal elements that are zero, as before.  Also as
before, a field perturbs both the diagonal and the off-diagonal elements.
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For vibrational modes that are completely degenerate in the absence of a field, the

normal modes may be expressed in any of several representations, making it possible to
choose one in which the off-diagonal elements of fij remain zero in an electric field.  As a

result, the elements of the rotation matrix given in eq. 17 that would otherwise become
singular, due to multiple li terms with the same value, are instead equal to zero.  With

this representation, it is found that the rest of the analysis in the previous section remains

correct to first order.  In particular, eqs. 30 and 32 give the Stark effects for degenerate

modes, as well as for non-degenerate modes.

More generally, there is often coupling between the vibrational modes of a

molecule, as in the degenerate system discussed above or in Fermi resonance.  In these

cases, the normal modes are linear combinations of basis state modes.  It is sometimes
desirable to calculate the Stark effects of the resonant modes from a knowledge of the

Stark effects of the basis states, or vice versa, which can be demonstrated with a two level
model system.  The vibrationally excited basis states are taken to be |AÒ and |BÒ; the

superposition states are written in terms of a real mixing coefficient c,

† 

¢ A ≡ 1 - c2 A + c B

† 

¢ B ≡ -c A + 1 - c2 B (35)

The transition dipoles and transition polarizabilities of excitations to the superposition

states are found with the transition dipole operator, resulting in the same linear
combinations as for the quantum states.  Using MY and AY as the transition dipole and

transition polarizability for excitation to excited state |YÒ,

† 

M ¢ A = 1 - c2 MA + cM B

† 

M ¢ B = -cM A + 1 - c2 M B (36)

† 

A ¢ A = 1- c2 A A + cAB

† 

A ¢ B = -cA A + 1- c 2A B (37)

The difference dipole moments are found by transforming the fij and fijk force constants

from the |AÒ, |BÒ basis to the |A'Ò, |B'Ò basis, yielding the results

  

† 

Dm ¢ A = 1- c2( )Dm A + c 2Dm B - 2c 1- c2 h

w ¢ A 

3vABjm j

k j
+ ¢ v AB

Ê 

Ë 
Á 

ˆ 

¯ 
˜ (38)



The Measurement and Physics of Vibrational Stark Effects 123

  

† 

Dm ¢ B = 1- c2( )Dm B + c 2Dm A + 2c 1- c 2 h

w ¢ B 

3vABjm j

k j
+ ¢ v AB

Ê 

Ë 
Á 

ˆ 

¯ 
˜ (39)

For example, if a molecule has an intense band with a large Stark effect near a weak band

with no Stark effect, small amounts of resonance will transfer about the same fraction of

absorption band area and ∆m from the strong band to the weak band, explaining a

phenomenon seen for the Stark effect of 15NO bound to myoglobin3.

Results and Discussion

Single mode analysis of acetonitrile and 4-chlorobenzonitrile.  Our previously

published Stark effect data for acetonitrile and 4-chloro-benzonitrile1 were analyzed

using the single mode theory, for which the results are presented in Table 1.  The sign

convention is that the positive z axis points from the nitrile carbon to the nitrogen.  Using

electronegativity arguments or results from ab initio calculations29, the carbon has a

partial positive charge while the nitrogen has a partial negative charge.  Several signs of
the parameters in the single mode theory were assigned from this physical picture,

yielding negative values for the transition dipole, the difference dipole, and the effective

charge.  While most of the necessary parameters for the theory were directly measured by
experiment, several had to be taken from the literature or from calculation.  Our previous

paper1 reported Stark effect results in terms of a local field correction factor, f; as in that
paper we assume here that f has a value of 1.1.  The acetonitrile absorption frequency is

known to be shifted below the frequency of just the nitrile stretch mode because of a

Fermi resonant interaction, so the analysis uses a frequency which has been corrected for

Fermi resonance30.  The reduced masses of the nitrile stretch modes were calculated from

a normal coordinate analysis of the molecules29 using a 6-31G* ab initio calculation for
acetonitrile and an AM1 semi-empirical calculation for 4-chloro-benzonitrile.  The

uncertainties of the corrected absorption frequency and the masses could not be estimated

reliably but are expected to be much smaller than other errors, so they were ignored.
Since the Stark effect cannot separate anharmonicity contributions (the v3 term) from the

field effect on the force constant (v2'), we used published anharmonicity values from
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Table 1.  Single Mode Results for Acetonitrile and 4-chloro-benzonitrile

Variable                Unit                           Acetonitrile                            4-Cl-benzonitrile               Source
Parameters used by theorya

n cm–1 2270.6 2230.6 ref. 30; ref. 1
M 10–3 aC Å –1.94 ±0.02 –2.97 ±0.03 ref. 1
∆m 10–3 aC Å –0.965 ±0.005 –1.277 ±0.012 ref. 1
∆a|| 10–3 aC Å2 V–1 –8.1 ±1.8 –2.7 ±2.9 ref. 1
A|| 10–3 aC Å2 V–1 9.67 ±0.76 13.34 ±0.89 ref. 1
m 10–28 kg 108.7 109.0 note b
v3 aJ Å–3 –20.99 ±0.23 –20.99 ±0.23 ref. 29
v4 aJ Å–4 24.2 ±1.2 24.2 ±1.2 ref. 29
Calculated resultsc

w fs–1 0.4323 ±0.0003 0.4252 ±0.0003 eq. 4
k aJ Å–2 20.32 ±0.02 19.70 ±0.03 mw2

q aC –0.0570 ±0.0005 –0.0863 ±0.0009 eq. 7
v2' aC Å–1 0.254 ±0.003 0.837 ±0.006 eq. 5
v1" aC Å V–1 –0.28 ±0.02 –0.39 ±0.03 eq. 10
∆m term 1d 10–3 aC Å –0.396 ±0.005 –0.627 ±0.008 eq. 5
A|| term 3e 10–3 aC Å2 V–1 9.65 ±0.76 13.30 ±0.89 eq. 8
∆a|| term 7f 10–3 aC Å2 V–1 3.9 ±0.3 5.6 ±0.4 eq. 6
∆a|| terms 2,3f 10–3 aC Å2 V–1 –12.1 ±1.8 –8.6 ±2.9 eq. 6
B||/M Å2 V–2 0.01 ±0.01 0.11 ±0.01 eq. 9

a) Uncertainties for M , ∆m , ∆a ||, and A|| were calculated from the original data;
uncertainties for v3 and v4 are those published in ref. 31.  b) Masses are from normal
mode calculations, as described in the text.  c) Uncertainties were found as described in
the text.  d) Anharmonicity contribution to ∆m from eq. 5.  e) Electronic polarizability
contribution to A|| from eq. 8.  f) Seventh term and sum of second and third terms of ∆a||
from eq. 6.

 spectroscopic data of HCN 31.  These values are for HCN rather than the molecules

analyzed here and they represent just the anharmonicity of the nitrile bond rather than the
anharmonicity of the normal mode.  However, they are expected to be good

approximations of the correct values since nitrile bond force constants have been shown

to be transferable among a large collection of benzonitriles32,33 and the normal mode of

interest is highly localized to the nitrile bond34.  For acetonitrile, a more accurate analysis

is discussed below and is in good agreement with these single mode results, whereas for
4-chloro-benzonitrile more accurate anharmonicities are not available.  The uncertainties



The Measurement and Physics of Vibrational Stark Effects 125

in the anharmonicities used in Table 1 are those published with the original values31, but

are lower limits for this application because of the these limitations.

The calculated uncertainties in Table 1 were found by carrying out computations

several thousand times, using input parameters that were normally distributed about the
best available values and with standard deviations that matched their uncertainties.  The

standard deviations of the results computed in this way are reported as their uncertainties.

Table 1, and the other tables, use an especially convenient set of SI derived units.  Using
angstroms (10–10 m), 10–28 kilograms, femtoseconds (10–15 s), attocoulombs (10–18 C),

attojoules, and volts eliminates the need for unit conversion and leads to values for most
fundamental constants and most molecular quantities between 10–3 and 103.  Conversion

factors to common non-SI units include 1 Debye = 0.03336 aC Å, 1 Å3 of polarizability

volume = 0.01113 aC Å2/V, 1 cm–1 of energy = 1.9865¥10–5 aJ, 1 MV/cm = 0.01 V/Å,

and 1 mdyne = 1 aJ/Å.

It is seen that anharmonicity accounts for about 40% of ∆m for acetonitrile and

about 50% of ∆m for 4-chloro-benzonitrile.  These are significant decreases from our

earlier estimate of 70% for all nitriles1, because the previous estimate only considered the

slope of the correlation between ∆m and the effective charge and it also incorrectly

adjusted for the local field correction (we divided by f where we should have multiplied

by f).  The remainder of the ∆m term results from v2', which represents the effect of the

electric field on the harmonic force constant.  Its value implies a 0.01% and a 0.04%
increase in the harmonic force constant upon application of a 1 MV/cm field parallel to

the nitrile bond of acetonitrile and 4-chloro-benzonitrile, respectively.  The larger value

for 4-chloro-benzonitrile is expected; the nitrile bond is conjugated to an aromatic ring
which has charge-separated resonance structures that are stabilized or destabilized by an

electric field, depending on the field direction.  The field influences the harmonic force
constant since the resonant structures have different nitrile bond strengths:
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While anharmonicity accounts for a significant fraction of ∆m, it accounts for much

less than 1% of A||.  Instead, A || arises almost exclusively from v1", which represents the

field dependence of the effective charge, due to electronic polarizability.  In the same 1
MV/cm field, v1" yields about a 5% increase in the effective charge for both species (the

effective charge becomes less negative).  The resonance structures shown above for 4-
chloro-benzonitrile are in qualitative agreement with this v1" behavior.

The physical origin for ∆a|| is less intuitive, but can considered in terms of the

relative sizes of the seven terms in eq. 6.  Using results from ∆m and A||, the first, fourth,

fifth, and sixth terms of ∆a|| contribute insignificantly to the measured result.  Since the

first and fourth terms are the only terms that include just mechanical effects, this origin of

∆a|| is ruled out, and electronic effects are seen to be important.  The seventh term yields

a significant positive contribution to ∆a|| which must be offset by the second and third

terms since ∆a|| was determined to be negative.  While the values of these final two terms

cannot be separated with the available information, there is sufficient information to see

that they significantly contradict results from ab initio theory.  The sign of v2" has been

consistently calculated to be negative for a wide variety of systems4,8-10, implying that

v3', the effect of the field on the cubic anharmonicity, must be negative and large enough
that the second term offsets all other contributions to ∆a||.  In contrast, calculations find

that v3' is positive and small enough that the second term is negligible10.

In the original analysis1, the transition hyperpolarizability was assumed to be zero

since it could not be measured independently.  Using results that are largely independent
of this assumption, B was calculated with eq. 9 and found to change the transition dipole

by 1 part in 106 for acetonitrile and 1 part in 105 for 4-chloro-benzonitrile, for molecules
oriented parallel to a 1 MV/cm field.  These values could be substituted back into the data

analysis to further refine all the values, but the improvement would be well within the

experimental uncertainty.
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Table 2: Potential Energy Matrix Components (Eq. 3) for Mononitrilesa

compound k q v2' v1" ∆a|| terms 2,3b

                                   aJ Å–2         aC         aC Å–1      aC Å V–1       10–3 aC Å2 V–1

acetonitrile 20.32c –0.0570 0.245 –0.19 –13.6
propionitrile 19.85 –0.0548 0.274 –0.18 –12.3
butyronitrile 19.90 –0.0561 0.281 –0.19 –9.3
valeronitrile 19.78 –0.0629 0.230 –0.08 0.6
hexanenitrile 19.84 –0.0554 0.276 –0.09 –8.3
acetonitrile-d3 19.87 –0.0611 0.249 –0.21 –18.5
benzonitrile 19.43 –0.0892 0.284 –0.35 –14.0
2-Cl-benzonitrile 19.73 –0.0684 0.276 –0.31 –9.3
3-Cl-benzonitrile 19.74 –0.0699 0.290 –0.29 –7.4
4-Cl-benzonitrile 19.70 –0.0863 0.285 –0.35 –8.7
4-methoxybenzonitrile 19.58 –0.1201 0.412 –0.17 –2.9

a) Computed using Stark effect data from ref. 1, anharmonicity data from ref. 31, masses
from AM1 calculation, and using the single mode theory (eqs. 4-9).  b) Sum of second
and third terms of ∆a|| expression in eq. 6.  c) Fermi resonance corrected frequency from
ref. 30.

Analysis of mononitriles.  A single mode analysis of other mononitriles, results of

which are shown in Table 2, yields the same overall picture as that found for acetonitrile
and 4-chlorobenzonitrile.  Figure 1 shows the correlation of ∆m with q for all the nitriles,

as well as the anharmonicity contribution of ∆m.  The best fit line has a slope of 0.012 Å

and an intercept of –2.9¥10–4 aC Å, while the line representing the anharmonicity

contribution has a slope of 0.0072 Å.  As before, anharmonicity accounts for about half
of the difference dipole.

Multi-mode analysis of acetonitrile.  A more thorough analysis of acetonitrile is
presented in Table 3, using mass-weighted normal coordinates and published

anharmonicities for the four normal modes with A1 symmetry35.  For the nitrile stretch

mode (mode 2), the dipole gradient was calculated from our experimental results since
this is more accurate for the environment in which the Stark data were taken, whereas the

published dipole gradients35 were used for the other modes.  The experimental nitrile
dipole gradient was 17% larger than the corresponding published value, indicating that
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Figure 1.  Correlation of difference dipoles with effective charges for mononitriles.
Difference dipole data are from ref. 1 and assume a local field correction value of 1.1;
effective charge data are calculated from the transition dipole data in ref. 1, using the
single mode theory.  Circles represent aliphatic compounds, numbered as: 1. acetonitrile,
2. propionitrile, 3. butyronitrile, 4. valeronitrile, 5. hexanenitrile, and 6. deuterated
acetonitrile.  Squares represent aromatic compounds, numbered as: 7. benzonitrile, 8. 2-
Cl-benzonitrile, 9. 3-Cl-benzonitrile, 10. 4-Cl-benzonitrile, and 11. 4-methoxy-
benzonitrile.  The solid line is the best fit to the data, with a slope of 0.0122 Å and an
intercept of –0.00029 aC Å.  The dashed line, which has a slope of 0.0072 Å, represents
the expected difference dipole if only anharmonicity contributed.

the other dipole gradients are likely to be reasonably accurate as well.  In agreement with
the single mode analysis above, it is found that 40% of ∆m arises from anharmonicity in

the nitrile mode.  Coupling to the other modes adds another 10% to the total

anharmonicity contribution: 7% is from coupling to the symmetric C-H bend mode, 3% is

from the C-C stretch mode, and 0.3% is from the symmetric C-H stretch mode.
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Table 3A: Multi-mode Analysis of Acetonitrilea

Parameter Unit Mode 1 Mode 2 Mode 3 Mode 4
                                               CH stretch       CN stretch       CH bend        CC stretch         
n b cm–1 2292.7 2270.6 1390 915.4
wi fs–1 0.5505 0.4277 0.2618 0.1724
mi 1011 aC kg–1/2 –7.14b –5.53c –8.78b –0.32b

vii2 10–3 aJ–1/2 fs–3 –0.179 –17.38 –0.706 –3.66
∆m term 1d 10–6 aC Å –3.13 –388.5 –66.9 –29.1

Table 3B: Vector and Matrix Components of Acetonitrile Stark Effects
∆m term 1e 10–6 aC Å x: 0 y:0 z:–487.6
v22' Å V–1 fs–2 x: 0 y: 0 z: 0.00192
v1"f 1011 aC Å V–1 kg–1/2 xx: –10.7 yy: –10.7 zz: –27.5

a) Computed using Stark effect data from ref. 1.  b) Ref. 35.  c) Computed from data in
ref. 1, as described in text.  d) Anharmonicity contribution to ∆m from coupling to each
normal mode, using eq. 30.  e) Total anharmonicity contribution to ∆m.  f) Off-diagonal
elements are zero, by symmetry.

The transition polarizability is not modified significantly from the single mode

result.  From eq. 32, three component cubic anharmonicities, vijk where i≠j≠k, would be
expected to add a small contribution to A  from resonance with other fundamental

frequencies (the observed Fermi resonance with a combination mode does not enter the
result to first order).  However, these anharmonicities are expected to be even smaller

than the two component anharmonicities (which are typically much smaller than one

component anharmonicities35) and are also unavailable in the literature.  Ignoring this
probably negligible correction yields the same result found before, that 99.8% of the

transition polarizability arises from v2".  It was found previously that the transition

polarizability has a significant perpendicular component1, which was attributed to a non-

conserved lineshape due to interaction with the Fermi resonant band 50 cm–1 to higher

energy.  While this is possible, it was surmised on the incorrect belief that A could not
have perpendicular components for a rotationally symmetric system.  Instead, it is

probable that A does have perpendicular components, which arise from perpendicular
components of vi", a term which represents a change of molecular electronic

polarizability with motion in the i’th normal mode.  Like all molecules, acetonitrile is
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polarizable on all axes, so it is not surprising that the polarizablility perpendicular to the

symmetry axis changes slightly with motion in the nitrile stretch mode.  With this
identification, nearly all the observed Stark effect results for acetonitrile are explained.

Conclusions

Previous experimental results1,3 inspired many questions on the physical origins of

vibrational Stark effects, which are addressed in this paper.  It is found that the dominant

Stark effect, ∆m, which represents the linear Stark tuning rate, arises from a combination

of mechanical and electronic effects.  Mechanical effects, due to anharmonicity of the
vibrational coordinates, account for about 50% of the value of ∆m for the nitrile stretch

mode of acetonitrile, of which 40% arises from anharmonicity in the nitrile mode and

10% arises from anharmonic coupling to other modes.  The other half of ∆m arises from

electronic perturbations of the chemical bonds, in which the quadratic force constant of

the normal mode is affected by an electric field.

The transition polarizability, A, arises almost exclusively from the molecular

electronic polarizability, in which partial charges on atoms are moved around by a field.
For acetonitrile, only 0.2% of A arises from the other contribution, the perturbation of

basis states by an electric field.  It is predicted that A is sensitive to resonant transitions,

an effect that has not been seen experimentally due to its relatively small size for the
systems considered to date.

The quadratic Stark shift, ∆a , is found to be a sum of terms that represent

anharmonicity, electronic perturbations of force constants, and products of these factors.

Since all the terms in ∆a are either high-order terms in a Taylor expansion (eq. 3) or are

products of low-order terms, ∆a is expected to be small, which is in agreement with

experiment, where ∆a was found to have a minimal effect on Stark spectra.  ∆a depends

to a significant extent on the product of the cubic anharmonicity and the electronic
polarizability, v3v1".  It also depends on two other terms involving electronic

perturbations, whose effects cannot be separated but which are shown to contrast ab initio

results.
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The smallest Stark parameter considered is the transition hyperpolarizability, which

was shown to contribute up to only 1 part in 105 to the transition dipole in a 1 MV/cm
field.  Unless experimental methods improve dramatically, it is appropriate to neglect the

transition hyperpolarizability.

Difference dipoles are found to be additive for multiple transitions.  For degenerate

transitions, Stark effects are identical to those for non-degenerate transitions if a normal

mode representation is chosen in which an electric field does not couple the modes.
More generally, Stark effects for resonant transitions are predicted to be linear

combinations of the effects for the uncoupled states, plus a coupling term for difference
dipoles.  This explains behavior seen for resonant transitions, including Stark effects of

NO bound to myoglobin36.

The analytical theory presented explains nearly all of the vibrational Stark
phenomena seen to date with parameters that are easy to interpret and that can be

generalized to other systems.  Most of the parameters determined here have not been
measured in other ways and differ significantly from ab initio calculations.  This

demonstrates the unique capabilities of vibrational Stark spectroscopy, but also implies

that the theory is largely untested.  In particular, it makes several predictions which have
not been verified, and for which experimental data are needed.
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