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Appendix A

Using Rotational Averaging to Calculate the

Response of Isotropic and Anisotropic Samples

For submission to:

J. Chem. Ed.

‘I have been spinning around and around the wheel like a

squirrel.  It is so dark I can’t tell which way she is swinging

till she is coming around like a whirligig.’

— Mark Twain

Life on the Mississippi
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Abstract

Since most physical chemistry experiments use bulk samples, it is often necessary
to calculate experimental responses from molecular parameters, summed over a range of

molecular orientations.  This paper explains the method of rotational averaging for both
isotropically oriented samples and partially oriented samples.  Its use is demonstrated

with several examples, including calculations of the energy of molecules in an electric

field and absorption and fluorescence spectroscopy.  A table of commonly used averages
allows the method to be generalized to more complex experiments.

Introduction

Part of the art of experimental chemistry is in determining the behavior of
individual molecules from measurements of bulk samples.  Conversely, it is often

desirable to know how a bulk sample will behave, given a known set of parameters for

individual molecules.  In both cases, we need to be able to add up individual molecule
responses in an experimental situation to derive the bulk response, an ensemble sum

which may also be expressed as an average over orientations for a single molecule.

Rotational averaging is commonly used for single- or multi-photon spectroscopy1, where

the latter includes fluorescence2, Raman3, photoselection4, dichroism5, pump-probe, and
other conventional and laser spectroscopy methods.  It is also useful for Stark effect

spectroscopy6-8 and, potentially, for a wide range of other physical chemistry

experiments using isotropic or partially oriented samples.  Despite its utility, rotational
averaging is rarely discussed in textbooks.

This paper explains the math behind rotational averaging by means of several
examples, including calculations of the energy of molecules in electric fields and

quantitative absorption and fluorescence intensities.  In the process, most of the

commonly used equations for rotational averaging are derived and it is shown how to
derive others using the equations given in Table 1.  The method presented here follows

notation used in Mathies’s doctoral thesis6, which he likely borrowed from elsewhere,



Using Rotational Averaging136

but its origin is not known to the author.  The math can be carried out in a much more

general manner9,10, but the results are complicated and rarely required.

Definitions of Terms

Following the normal convention, X, Y, and Z  are the Cartesian axes in the lab
reference frame, used for defining orientations of polarizers, molecular beams, and other

lab apparatus.  For a molecule, the Cartesian axes are x, y, and z, which are used for

dipole moments, polarizabilities, transition dipoles, symmetry axes, and other molecular
properties.  The molecule’s orientation is given with Euler angles, q , f, and c, where

these angles express the rotation of the molecular axes with respect to the lab coordinate

system2,11.  q  and f are the familiar angles from spherical coordinates, giving the

direction of the molecule’s z axis in the lab frame: q is the angle between Z and z, and f

is the angle between X and the projection of z on the XY plane.  c is an azimuthal angle

that expresses the rotation of the molecule about its z axis.

In a bulk sample, the fraction of molecules with orientations within dq, df, and dc

of the exact orientation q , f , and c is given by r(q,f,c)sinqdqdfdc; r(q,f,c) is the

orientational density and the rest of the expression is a differential element.  Since
r(q,f,c) represents a fraction of the sample, it is non-negative for all values of q, f, and

c, and it integrates to 1.  For an isotropic sample, which is covered in depth in the next

section, r(q,f,c) is a constant and is found to be equal to (8π2)–1.  When a molecule

interacts with the experimental system, the result (e.g. an absorption cross-section)

depends upon the molecule’s orientation and is given by f(q,f,c).  The bulk response is

the average value of f(q,f,c), properly weighted with the orientational density, and is

† 

average value = 8p 2 f q,f, c( )r q,f, c( ) . (1)

The brackets indicate an average over the ensemble of molecules.  The factor of 8π2

accounts for the total “volume” of possible Euler angles and is present because of the
way the brackets are normalized: defining g(q,f,c) as an arbitrary function of Euler

angles, the brackets are defined by

† 

g q,f,c( ) =
1

8p 2 g q,f,c( ) sin q( )dq df dc
0

2p

Ú
0

2p

Ú
0

p

Ú . (2)
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This definition is normalized so that ·1Ò=1, which is easily confirmed.  The constraint that

r(q,f,c) integrates to 1 can be restated using the bracket notation as ·r(q,f,c)Ò=(8π2)–1.

From these equations, rotational averaging is seen to be a linear operation yielding, for

example,

† 

c1g1 q,f,c( ) + c2g2 q,f,c( ) = c1 g1 q,f,c( ) + c2 g2 q,f,c( ) . (3)

In principle, all rotational averaging can be carried out with a suitable choice of

r(q,f,c), f(q,f,c), and eqs. 1, 2, and 3.  However, the problem is vastly simplified by

solving it for the general case, which can then be applied to a wide range of standard

problems.

Isotropic Averages

For the case of an isotropically oriented sample, r(q,f,c) is independent of q, f, and

c, and is equal to the constant (8π2)–1, allowing eq. 1 to be simplified to

† 

average value = f . (4)

Energy of immobilized dipoles in a field.  Suppose we want to calculate the energy
of a sample of molecules in a uniform electric field, where each molecule has a dipole

moment p and is immobilized so it cannot rotate (such as molecules suspended in a
polymer matrix).  This dipole moment is expressed in the molecule coordinate system; in

the lab coordinate system, the same dipole moment vector is given as pL.  The two

representations are related by a coordinate transformation using the direction cosine
matrix, F, where pL=pF.  In terms of the Euler angles that define the relative rotation of

the two coordinate systems, the direction cosine matrix is2

† 

F =

cf cq cc - sf sc sf cq cc + cf sc -sq cc

-cf cq sc - sf cc -sf cq sc - cf cc sq sc
cf sq sf sq cq

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

† 

=

¢ l x ¢ ¢ l x lx

¢ l y ¢ ¢ l y ly

¢ l z ¢ ¢ l z lz

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
. (5)

In the matrix, c is used for cosine and s is used for sine.  The li
() coefficients, using i as an

index for x, y, or z, are nothing more than a convenient shorthand notation for elements of
the F matrix.  Thus, each li

() term is a function of q, f and c.  As F is a real unitary

matrix, FTF is the identity matrix (T denotes the matrix transpose).
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The electric field, E, is in a fixed direction for the entire sample.  For convenience,

the lab coordinate system is defined so that E is parallel to the Z axis, allowing it to be
written as the scalar E times a unit vector on the Z axis, Z.  The average energy from

electric field interactions is12

† 

Uav. = -pL ⋅ E = -E pL ⋅ Z . (6)

The brackets are solved using the shorthand form of eq. 5,

† 

pL ⋅ Z = pFZ = pxlx + pyly + pz lz = pi li = 0 . (7)

The second to last equality uses the Einstein summation convention, in which summation

is implied over all repeated indices.  The final equality follows by either direct integration
of the relevant F coefficients using eqs. 2 and 5, by an analysis of their symmetry, or by

looking up the result in Table 1.  It is seen that the total energy of randomly oriented

dipoles in a uniform field is zero (which could have been deduced from symmetry).

Absorption of light.  Molecules absorb light by the interaction of electronic
fluctuations in the molecule, along the transition dipole moment m, with the oscillating

electric field of a light wave13, which is in the direction ê.  The molar extinction

coefficient for a single molecule, integrated over an electronic transition, is11,14

† 

e n( )Ú dn =
2p 2NAn
e0hcln10 ê ⋅m( )2 . (8)

It can be seen that absorption is maximal for molecules oriented with m parallel to ê, and

is zero for those with m perpendicular to ê.  For a bulk sample, the vector product needs

to be averaged over all molecular orientations, as before.  However, since the vector
product is squared before averaging, the result will be non-zero this time.  Orienting the Z

axis to be parallel to the light polarization, the required rotational average is

† 

mL ⋅Z( )2
= mFZ( )2

= mxlx + myly + mzlz( )2
= mili( )2

= mim j li lj

† 

= mim j

dij

3 =
mimi

3 =
m2

3 . (9)
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As before, the ·liljÒ factor can be solved by integration of the sines and cosines in eq. 5 or

the solution can be looked up in Table 1.  The result shows that an isotropic bulk sample

absorbs 1/3 as much light as a sample of molecules that are aligned parallel to the light
polarization.

Fluorescence.  Fluorescence is a two photon process in which a molecule absorbs
incident light with its absorption transition dipole, ma, and subsequently emits a photon

from the transition dipole, me.  To determine the angle between the two transition dipoles,

g, an experiment excites an isotropic sample with light polarized along Z and detects

emitted light using a polarizer which transmits light polarized along ê.  The lab frame is
defined so ê is in the X-Z plane at angle a  away from Z.  The absolute fluorescence

intensity is essentially just eq. 8 written twice, once for absorption and once for emission,

with the product multiplied by the fluorescence quantum yield.  The rotational average

part of the equation is

† 

me,L ⋅ê( )2
ma,L ⋅Z( )2

= me,L ⋅ Zcosa + Xsina( )[ ]2
ma,L ⋅ Z( )2

† 

= me,L ⋅ Z( )2 ma,L ⋅ Z( )2 cos2a + me,L ⋅ X( ) me,L ⋅ Z( ) ma,L ⋅ Z( )2 cosa sina

    + me,L ⋅ X( )2 ma,L ⋅Z( )2 sin2a
(10)

The three averages are solved independently, using slightly simplified notation and the

results in Table 1:

† 

rL ⋅Z( )2 sL ⋅ Z( )2
= rirjsksl li lj lkll =

r 2 s 2
+ 2 r ⋅ s( )2

15 (11)

† 

rL ⋅ X( ) rL ⋅Z( ) sL ⋅Z( )2
= rirjsksl ¢ l il j lkll = 0 (12)

† 

rL ⋅ X( )2 sL ⋅Z( )2
= rirjsksl ¢ l i ¢ l j lkll =

2r 2 s 2
- r ⋅ s( )2

15 . (13)

The cross-term in eq. 10 drops out, leaving terms for the fluorescence intensity parallel, I||

(eq. 11), and perpendicular, I^ (eq. 13), to the excitation.  Using A as a proportionality

constant, the fluorescence intensity is
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† 

I = A
me

2 ma
2

+ 2 me ⋅ ma( )2

15 cos2a + A
2me

2 ma
2

- ma ⋅me( )2

15 sin2a . (14)

This result can be simplified by confining the a dependence to only one of the terms

using the trigonometric identity

† 

I||cos2a + I^sin2a =
I|| + 2I^

3 +
I|| - I^

3 3cos2a -1( ) . (15)

This, along with the replacement of dot products with cosg terms, simplifies eq. 14 to

yield

† 

I = A
me

2 ma
2

9 + A
me

2 ma
2 3cos2g -1( )
45 3cos2a -1( ) . (16)

The fluorescence anisotropy is defined as (I ||–I^)/(I||+2I^) and is found to be equal to

(3cos2g–1)/5, allowing a measurement of the internal angle g from parallel and

perpendicular fluorescence intensities.

Rather than re-arranging the result after rotational averaging, as was done using eq.

15, it is generally more convenient to do so beforehand.  In that case, averages such as

·(lilj+2li'lj')/3 lkllÒ and ·(lilj–li'lj')/3 lkllÒ are needed for the respective terms.  These averages

are quite simple and are given in Table 1, along with the others.

Energy of polarizable molecules in a field.  Molecular polarizabilities are matrix

quantities that give rise to induced dipole moments when a molecule is in an electric

field, as well as Raman scattering and multi-photon absorption.  Rotational averages with
matrices are similar to the previous examples.  a is taken as a molecule’s polarizability

matrix and aL is the same matrix expressed in the lab coordinate system, terms which are

related with the coordinate transformation aL=FTaF.  As in the first example, the sample

is assumed to be immobilized and there is a static electric field along the Z axis.  The

average energy is12

† 

Uav = -
1
2 Ea LE = -

E 2

2 Za LZ . (15)

The rotational average is
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† 

Za LZ = ZFTaFZ = aij lil j =
a ijdij

3 =
Tr a

3 , (16)

where the notation “Tr” denotes the trace of a matrix.  Thus, the energy decreases with
increasing polarizability and is proportional to the sum of the polarizability eigenvalues.

Higher rank tensors, such as hyperpolarizabilities, are averaged in an analogous manner

to the examples shown for vectors and matrices.

Anisotropic Averages

Many samples are at least partially oriented, which may arise from photoselection,

external electric fields, flow gradients, or other sources.  As described above,
orientational information is given with the orientational density r(q,f,c), where the only

constraints are that it integrates to 1 and is positive everywhere.  A useful method is to

expand r(q,f,c) in terms of the elements of the direction cosine matrix, which then

combine easily with the rotational averaging analysis.

Energy of mobile dipoles in an electric field.  A previous example showed that

an electric field does not affect the total energy of isotropically oriented immobilized

dipoles.  This example considers a similar experiment except that the dipoles are mobile
this time, as in a gas or liquid, so they will become partially oriented in a field.  As

before, the lab frame axes are defined so the electric field is EZ and dipole moments in
the molecule frame are p.  The equilibrium orientational density is given by the

Boltzmann distribution, where b is the Boltzmann factor (1/kBT),

† 

r q,f, c( ) µ exp -bU( ) = exp bpL ⋅ E( ) ª1+ bEpL ⋅Z , (17)

which is normalized to give

† 

r q,f, c( ) ª
1

8p 2 1+ bEpL ⋅Z( ) . (18)

Using this density, the average Z component of p is non-zero:

† 

8p 2 pL ⋅Z( )r = pL ⋅Z( ) 1+ bEpL ⋅ Z( ) = pi li + bEpip j lil j = bE
p 2

3 . (19)

Combining this result with eq. 6 yields the average energy of this system, which is
–bE2|p|2/3.  In the infinite temperature limit, the sample approaches isotropy and the
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average energy goes to zero, in agreement with eq. 7.  The low temperature limit cannot

be evaluated with this expression because of the approximation made in eq. 17, although
lower temperatures can be evaluated by including more terms in eq. 17.

Conclusions

Rotational averaging is an essential element to a great deal of physical chemistry.

While the averaging can be considered separately for each experiment, it is generally

preferable to separate this portion of the math from the rest of the analysis.  This paper
shows that rotational averaging is not difficult and is readily extendable to more complex

experiments.  Many of the vector and matrix averages presented here are directly useful
elsewhere and many more can be easily derived from Table 1.
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Table 1.  Useful direction cosine averages

Note that n!! = n(n–2)(n–4)…(2 or 1).

  

† 

li = lil j lk = lil j lkll lm = L = 0

† 

1 = 1

† 

lil j =
d ij

3

† 

lil j lkll =
d ijd kl +d ikd jl +d ild jk

3 ⋅ 5

  

† 

lil j lkll lmln =
d ijd kldmn + d ijdkmd ln +L

3 ⋅5 ⋅ 7 15 terms

  

† 

li1 li2 Llin =
0 n odd

d i1i2
d i3i4

Ldin-1in
+L

n +1( )!!
n even

Ï 
Ì 
Ô 

Ó Ô 

¸ 
˝ 
Ô 

˛ Ô 
(n–1)!! terms

  

† 

¢ l il j = ¢ l il j lk = ¢ l il j lkll = L = 0

† 

¢ l i ¢ l j lkll =
4d ijd kl - dikd jl -d ild jk

2 ⋅ 3 ⋅ 5

  

† 

¢ l i ¢ l j lkll lmln =
6dijd kldmn + 6dijd kmd ln + 6dijd kndlm -d ikd jldmn -L

2 ⋅ 3 ⋅5 ⋅ 7 15 terms

  

† 

¢ l i1 ¢ l i2 li3
li4 Llin =

0 n odd
di1i2

li3
li4

Llin
- li1

li2
Llin

2 n even

Ï 
Ì 
Ô 

Ó Ô 

¸ 
˝ 
Ô 

˛ Ô 

  

† 

li1
li2

+ 2 ¢ l i1 ¢ l i2
3 li3 li4 Llin =

d i1i2
li3

li4
Llin

3

  

† 

li1
li2

- ¢ l i1 ¢ l i2

3 li3
li4 Llin

=
li1

li2
Llin

2 -
di1i2

li3
li4

Llin

6
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