PHYS 4200
Summary of second half of course

Thermodynamics

Heat, work, entropy: dQ=dE+dW dW =pdV  dS= dTQ

Fundamental thermodynamic relation: dE =T7dS — pdV
Enthalpy is energy change, including p-V work: H = E+ pV

Helmbholtz free energy is minimized at constant volume and temperature: F'=E—-TS
Gibbs free energy is minimized at constant pressure and temperature: G = H —T§
Table of “energies” and Maxwell relations:

dE =TdS — pdV dH =TdS + Vdp
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Ideal gases
Equation of state: pV = NkT =vRT

Free expansion (expansion without work) does not change energy or temperature.

Density of states: Q=BV"E e
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Energy (from dQ/dE, or equipartition, or dZ/df): E= ENkT
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Molar heat capacity (from 0E/0T): ¢, =—R ¢ ,=¢,+R=—R y=—+=1+—=—
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Isothermal expansion (from eq. of state): pV = constant
Adiabatic expansion: pV” = constant
s o

Probability of momentum p or velocity v: P(p)~e 2" P(v)~e 2



Entropy (from Z): S= Nl{ln%+%lnT 31 27tmk + Z}

In classical limit if R >>2 where R is separation between particles and A is thermal de
Broglie wavelength. This is from Heisenberg uncertainty relation, AgAp >h .

Maxwell velocity distributions: f(v ,f F(v)=4nv n,f i e_ﬁT
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Flux of molecules striking a surface (or effusion): @, =
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Quantum states of particle in a box: €= —(Kf +K+ Kf) 2+ =+
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Density of states of K and over & p, = % pP.= %

Non-ideal gases
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v is volume per mole, a is attraction coefficient, and b is repulsion from volume exclusion.

virial equation of state: p=kT [n+ B,(T)n’ + B, (T)n3 +-- ] ,h=N/V.

van der Waals equation of state: p=

Heat engines and refrigerators

Heat engines obey conservation of energy (e.g. g, = w+q,, for g, as heat flow from hot
reservoir, w as work done, and ¢, as heat flow into cold reservoir) and entropy of
entire system must increase over time (e.g. AS =0 for AS =-q,/T, + ¢,/T,).

Efficiency is 1 (e.g. n =w/q, < 1-T,/T, < 1); if engine is quasi-static, 7= 1.

A Carnot engine performs a cycle on a p-V graph: adiabatic compression, isothermal
expansion, adiabatic expansion, and isothermal compression.

Refrigerators are identical, but arrow directions are reversed.

Heat pumps are similar as well.

Ensembles
Microcanonical ensemble uses €2(E); particularly useful for system with fixed energy.

3 o ‘ I/Q(E) E<E,<E+0E
Probability of being in state r is: P(r) =

0 E_ not in range
Canonical ensemble uses Z(7); particularly useful for system with fixed temperature.
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Probability of being in state r is: P(r) = ¢
Z(T)

Z(T) is the partition function, Z (T) = z e Ph
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Classical version: Z:h—NJImJe PEG42 ”’N)dql dgq,---dp,

Divide this by N! for indistinguishable particles (recall Gibbs’s paradox).

Q(E
Probability of having energy E, given temperature 7, is P(E)= ZET)) e P*
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Mean energy and variance: E=——Y Ee Pir=——— 2 (AE*)=—— =
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Generalized forces: X =— Jln

B ox
Entropy: S = k(an + ﬁl_?)
Helmbholtz free energy: FF'=—kT InZ
Combining ensembles: QO = QQ, z9 = ZZ,
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Grand canonical ensemble: P(r)=————e %% Z =) e Pt
Z(T,N) p

Chemical potential is y: 4 = -kTa, or ot = -fu.

Magnetization (and other two-level systems)

Atoms have magnetic moment g, field is H, energies are € = +uH.
BuH -PuH
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Using canonical ensemble: [i=P,u+ P (—u) = ptanh fuH

Magnetization is M = NIi . It is Nu for low temperature, O for infinite temperature, and

xH for high temperature where y = NSu’, which is magnetic susceptibility. (Note
that tanh(x) ~ x for x << 1).

Equipartition theorem

Each x* term in the Hamiltonian adds thermal energy of k7/2 to each particle, if kT is
much larger than the mode’s quantum energy levels.

Examples: ideal gas (E = 3NkT/2), harmonic oscillator (E = kT), Brownian particle, atoms
in a crystal, etc.

Quantum statistics

Bosons: photons, He atoms, Cooper pairs, neutral atoms with even number of neutrons.
Wavefunction is symmetric upon particle exchange. Indistinguishable, multiple
particles may occupy the same state.

Bose-Einstein distribution, for mean bosons per state: n =
Bose-Einstein partition function: InZ =—BuN - 2 ln(l — e Plen ))

Photons are bosons, but number of particles is not conserved and u = 0.

Planck distribution, for mean photons per state: n =



Fermions: electrons, protons, neutrons, quarks, neutral atoms with odd number of
neutrons. Wavefunction is antisymmetric upon particle exchange.
Indistinguishable, only 1 particle per state (Pauli exclusion principle).
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Fermi-Dirac distribution, for mean fermions per state: n, = "
e +

Fermi-Dirac partition function: InZ = —fuN + 2 ln(l +ePleH ))

Maxwell-Boltzmann statistics: the classical case, ignoring indistinguishability. Particles
are distinguishable and multiple particles may occupy the same state. Bose-
Einstein and Fermi-Dirac approach MB in the high temperature and low density
limits (however, their partition functions approach 1/N! times the MB partition
function due to indistinguishability).
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Maxwell-Boltzmann distribution, for mean particles per state: n. = N W
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Blackbody radiation
Derived from Planck distribution and density of states for particle in a box.
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Energy density in a cavity (Planck’s law): (@)=

3kT -~
Wein’s displacement law: @ = % , A= ? ,b=2.898%x10" m K.
okt
Total energy density in cavity: i, (7T )= ——

Radiation pressure on cavity walls: p = ?0

For radiation emitted by a body at temperature 7, good absorbers are good emitters

(Kirchoff’s law) and radiation emission is ~ cos(6) where 6 is the angle away
from the normal (Lambert’s law).
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Stefan-Boltzmann law is emitted power: P=0T"* o = 0T ~5.670-10° Wm~K™
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Electrons in metals
n’ N3
Fermi energy at 7=0: U, = —(37272 —j
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Usually, 4 >> kT, so L = L.
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At Fermi level: T, = Ho 80,000k Uy = Lr MV MKy
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de Broglie wavelength: A, =—= i 7 (—j = (Z)
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Heat capacity from electrons: C, = %Nk(Tl]
F



