PHYS 4200

Summary of first half of course

Math

Probability - coins and dice; probability of multiple independent events. Probability distributions - discrete and continuous, 1 and multiple variables Moments of distributions - mean, variance (or dispersion), standard deviation Random walks - probability of n_1 steps right; probability of ending at *m* steps to right Binomial distribution - *N* choose n_1 is $N!/[n_1!(N-n_1)!]$ Stirling's approximation - $\ln N! \sim N \ln N - N$ Gaussian distribution - $p(x) = 1/\sigma \sqrt{(2\pi)} \exp[-(x-\mu)^2/2\sigma^2]$ Poisson distribution - $P(k) = \lambda^k e^{-\lambda}/k!$, mean = λ , variance about mean = λ Gaussian approximation - approximating distribution with Gaussian is often adequate Central limit theorem - Adding *n* random variables, with mean μ and variance σ^2 , approaches Gaussian with mean $n\mu$ and variance $n\sigma^2$.

Converting the independent variable - e.g. from $p(\phi)$ and $\phi(x)$, compute p(x). Exact and inexact differentials - how to determine, state functions. Hyperbolic trig functions.

State space

Microstates and macrostates

Classical phase space - e.g. ideal gas, classical harmonic oscillator; partitioning space Quantum state space - e.g. spins, particle in box, quantum harmonic oscillator H-theorem - using microscopic reversibility, this shows that H always decreases, where H

is essentially the negative of the entropy and relates to localization in state space. Liouville theorem - using master equation for probability flow, shows that probability

flow in phase space has zero divergence, like incompressible fluid flow. Principle of equal a priori probabilities - holds if system is at equilibrium Probability of macrostate - macrostate with property y has probability $\Omega(E;y)/\Omega(E)$. Reversible and irreversible processes

Density of states

System with f degrees of freedom - $\Omega(E) \sim E^{f/2}$; E = fkT/2.

Ideal gas / particle in a box - $\Omega(E) = BV^{N}E^{3N/2}$; E = 3/2 NkT.

Harmonic oscillators - $\Omega(E) = (E/hv)^N$ (for indistinguishable harmonic oscillators) Spin systems

Polymer

Heat and work

Work - W is work done by system; e.g. $dW = p \, dV$. Generalized forces - parameter is x and generalized force is X; examples are V and p. Heat - Q is heat added to the system. $Q = \Delta E + W$. Conservation of energy - $\Delta E = -W + Q$ Quasi-static processes - parameters change more slowly than system relaxation time. System properties

Thermodynamic β - defined as $\beta = \partial \ln \Omega / \partial E$. Also, $\beta = 1/kT$.

Entropy - defined as $S = k \ln \Omega$. Also dS = dQ/T. Entropy is a state function. As T decreases to 0, S decreases to S₀ (often 0). Also, $\Delta S = \int dQ/T = \int C_y(T)/T dT$.

Temperature - defined as $T = 1/k\beta$. Also, $1/T = \partial S/\partial E$. Temperature can be positive, negative, 0 or ∞ .

Interacting systems - at equilibrium, $\beta_1 = \beta_2$, $T_1 = T_2$, and $p_1 = p_2$.

Generalized force - compute using $\beta X = \partial \ln \Omega / \partial x$. Also, $X/T = \partial S / \partial x$.

Equation of state - relate generalized forces, external parameters, and temperature; e.g. ideal gas law is pV = NkT.

Heat capacity - at constant y, $C_y = (\partial Q/\partial T)_y = T (\partial S/\partial T)_y$.

Molar heat capacity - heat capacity per mole, given as c_y .

Laws of thermodynamics

- 0th if two systems are in equilibrium with a third, then they are in equilibrium with each other.
- 1st Energy is conserved. If a system interacts with others, $\Delta E = -W+Q$.
- 2nd Total entropy always stays the same or increases in any process; dS = dQ/T.
- 3rd As temperature decreases to 0, S decreases to S_0 , which is a constant.