Last week
. . * gene regulatory networks
Stochasticity and robustness - graphs
* Boolean networks
« transcription dynamics

Lecture 5 of Introduction to Biological Modeling * motifs
Oct. 20, 2010
Steve Andrews Reading
Rao, Wolf, and Arkin, “Control, exploitation and tolerance of intracellular
Brent lab, Basic Sciences Division, FHCRC noise” Nature 420:231-237, 2002.

(Arkin, Ross, and McAdams, “Stochastic kinetic analysis of
developmental pathway bifurcation in phage A-infected Eshcherichia coli
cells” Genetics 149:1633-1648.)
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Stochasticity origins Probability vs. probability density
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Reaction timing is random probability for discrete events . -
now, determined by diffusion each bar is probability

. - 1/6 of a specific event
and reaction rate upon collision ‘O’ H H H H H H partial sum is cumulative
probability density of reaction time 0 probability
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total sum of bars = 1

be probability density for continuous events
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How much variation? How much variation?
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9 Credit: Rao et al. Nature 420:231, 2002 10

where does stochasticity matter?

Al Bl Plex) Boxy At, or near, steady state

RELLR2R3 R4

RS o RY : variation is still ~ 1 species copies stochastic?
v J Jr DNA 1 0r 2 (or 4) no, tightly controlled
PATC P
' *‘%\\ . D>ii?6< . mRNA 0to 100s yes

proteins 1 nM =1 molec. in E. coli (2 fl) yes
| | iati tochasticit =300 molec. in yeast (500 fl) probably
molecules  variation  stochastcity 1 uM = 1000 molec. in E. coli maybe
10,000 1% not important = 300,000 molec. in yeast no
1000 3% probably not important
100 10% probably important metabolites uM to mM usually no
10 30% very important
1 100% essential
Credit: Klamt and Stelling in System Modeling in Cellular Biology ed. Szallasi et al. p. 73, 2006. 11



Sources and amount of stochasticity
Amplifying stochasticity

Reducing stochasticity

Modeling stochasticity

Summary

Phage A lysis-lysogeny
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Amplification with transcription/translation

DNA —> RNA — protein

DNA is fixed at 1 (or 2 or 4)
‘ ' RNA follows v/ rule
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noise is amplified
in translation, so i
protein noise >> i S TUARAG

Benefits of stochasticity

Population heterogeneity
(phase variation)

« E. coli pili variation

« Salmonella flagella

« phage A lysis-lysogeny

Waiting mechanism
« phage A lysis-lysogeny

Exploration strategies
« E. coli chemotaxis

Similar benefits in ecology
and in evolution

Credits: http://www.biologyjunction.com/fimbriae_article.htm; Alberts, et al., Molecular Biology of the Cell, 3rd ed. Garland Publishing, 1993. 14

Phage A lysis-lysogeny

Lysis-lysogeny model
of Arkin, Ross, and
McAdams, 1998.

Stochastic decision upon
initial infection.

Stochastic departure from
lysogeny to lysis.

b nuclectides from the cohesive end site (cos)
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Credit: Arkin et al. Genetics 149:1633, 1998 16

Amplification with positive feedback
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More amplification with positive feedback
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intrinsic vs. extrinsic noise
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IPTG — Lacl — DNA— RNA— protein
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Credits: Elowitz et al. Science 297:1183, 2002. 21

Sources and amount of stochasticity
Amplifying stochasticity

Reducing stochasticity

Modeling stochasticity

Summary
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intrinsic vs. extrinsic noise

Question: is noise arising from factors intrinsic to gene
expression, or upstream extrinsic factors?

IPTG — Lacl — DNA—> RNA— protein

extrinsic noise intrinsic noise

Solution: 2 GFP genes, same only extrinsic noise
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Credits: Elowitz et al. Science 297:1183, 2002. 20

intrinsic vs. extrinsic noise

IPTG —iLacl — DNA.

> RNA %/\protein
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Credits: Elowitz et al. Science 297:1183, 2002. 22

Problems of stochasticity

* development
* signaling

Noisy inputs, and want to make best
decision possible.

24



Noise reduction with negative feedback

Boler Steam Engine

LT

Figure 1 — Watt-centrifugal-govemor-steam-engine system.

Credit: Sotomayor et al. Computational and Applied Mathematics, 26:19, 2007 25

Noise reduction with integral negative feedback

Barkai and Leibler, 1997 showed bacterical chemotaxis adaptation is robust
to protein number variation.

glﬂ-
Postulated: CheB 3
only demethylates Sos
active receptors 2
Result N
adaptation robust to variable o8
protein concentrations 00 o

10 10° 10° 10"
Total parameter variation

Yi, Huang, Simon, and Doyle, 2000 showed that this arises from integral
negative feedback.

« adaptation is from integral

« robustness is from negative feedback

Credit: Barkai and Leibler, Nature, 387:913, 1997. 27

Sources and amount of stochasticity
Amplifying stochasticity

Reducing stochasticity

Modeling stochasticity

Summary
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Noise reduction with negative feedback
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Becksei and Serrano, Nature 405:590, 2000. 26

Noise reduction with feed-forward motif

filters out brief inputs — noise reduction
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Credit: Shen-Orr et al., Nat. Genetics 31:64, 2002. 28

Stochastic modeling

2 approaches

» compute every possible outcome at
once, with probabilities

« simulate individual trajectories, and
then analyze results
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Chemical master equation approach Chemical master equation approach

More generally, a trajectory is a random walk in state space. The master

Calculate the probability of every possible system state, equation computes the probability of being in each state as a function of time.

as a function of time

P )
A—>B I“i.f_'i--iﬂl
State is number of A molecules 8 it 8 '
. o, . . =3 =T 3
P, is probability system is in state a. states é é
- £ £
dP [ [13] 23]
—< =P, — kP, . B O NN
dt \ entering state —» ¢ B state 9
i el
leaving state ] A molecules A molecules
rate of rate of ]
entering leaving L]
state state [ . . A
L Exact solution for all trajectories, but
— « doesn’t give sense of trajectories
] « is hopelessly complicated for realistic system
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Langevin approach Gillespie algorithm

k k
A=»B A—B
deterministic stochastic probability distribution
ise term . of reaction time
Al 4] e 1. For each reaction path '
dr dr kA0 « decide when the next reaction will be:
— tis drawn from an exponential distribution
AlA]=-k[A]ar AlA]=-k[A]ar+ X k[ A]ar « decide what the product will be:
\ Gaussian distributed Here, B is the only option
random variable with .
mean 0, std. dev. 1 2. Step the system forward to the next reaction
Result has correct level of noise, but 3. Perform the reaction
» number of molecules is not discrete
« A can increase as well as decrease 4. Repeat

Method is exact, but simulates slowly.
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Gillespie algorithm

A=»B
probability distribution
of reaction time
1. For each reaction path
« decide when the next reaction will be:
T is drawn from an exponential distribution
« decide what the product will be:
Here, B is the only option

2. Step the system forward to the next reaction Summary
3. Perform the reaction

4. Repeat

variants: Gibson-Bruck, direct method, first-reaction method,
optimized direct method.
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Source of stochasticity
+ reaction timing No class next week. Instead, a talk by Herbert Sauro.
Amount of stochasticity
« ¥ n is rule-of-thumb
Amplification
« good for population heterogeneity, etc.
« transcription/translation
« positive feedback Read
« intrinsic/extrinsic noise ?
Reduction
« negative feedback
« feed-forward motif
Modeling
« chemical master equation
« Langevin equation
« Gillespie algorithm

In two weeks, development and pattern formation.
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