About me

Introduction to Biological Modeling

Lecture 1: Introduction Sept. 22, 2010

Steve Andrews

Brent lab, Basic Sciences Division, FHCRC

- · Background: experimental chemical physics
- · Changed to computational biology in 2001
- · Focusing on spatial simulations of cellular systems

2

6

· Joined Hutch last year

office: Weintraub B2-201 e-mail: sandrews@fhcrc.org

About you

https://www.surveymonkey.com/s/biologicalmodeling

You are		Your divisions are		
Graduate Student		Basic Sciences		
Postdoctoral Fellow		Clinical Research		
Medical Fellow		Human Biology		
Staff Scientist		Public Health Sciences		
Faculty		Vaccine and Infectious Disease		
Technician				
	-	Other		
Statistical Research Associate				
Other				

Backgrounds include: genetics, proteomics, epidemiology, molecular biology, biochemistry, etc.

~ 25% of you have modeling experience

About you https://www.surveymonkey.com/s/biologicalmodeling You are ... Your divisions are ... Graduate Student Basic Sciences ctoral Fellow **Clinical Research** Human Biology Public Health Sciences Faculty Vaccine and Infectious Disease Technic Other ch A Other

Backgrounds include: genetics, proteomics, epidemiology, molecular biology, biochemistry, etc.

~ 25% of you have modeling experience

Please ask questions and share your knowledge in this class!

About this class

Introduction to Biological Modeling

Broad Scope dynamics metabolism gene networks stochasticity epidemiology, ecology ...) development mechanics cancer

today's class (not statistics, bioinformatics,...)

Why model biology?

Example: E. coli chemotaxis

Typical modeling progression

A cell is like a clock

7

closed compartment, complex internal machinery, does interesting things

Credits: guardian.co.uk, January 8, 2009; http://www.faqs.org/photo-dict/phrase/409/alarm-clock.html

Make a simplified model system ...

Credits: http://www.acad.carleton.edu/curricular/BIOEfaculty/szweifelindex.html; http://retrotoys.com/index.php

... experiment on it ...

Credits: Edyta Zielinska, The Scientist 21: 36, 2007; http://www.thinkgeek.com/geek-kids/3-7-years/c1de/

Cartoons convey basic concepts, but we still don't fully understand

To understand, we need to create a model that:

- is precise
- accounts for the important facts
- ignores the unimportant facts
- allows us to explore the system dynamics ... and build an understanding

We don't truly understand until we can make accurate predictions

Credits: Wikipedia, public domain; http://www.woodenworksclocks.com/Design.htm

A clock model

This model is a hypothesis that allows quantitative predictions

11

E. coli swimming

E. coli cells "run" and "tumble"

Why model biology?

Example: E. coli chemotaxis

Typical modeling progression

tumble (CW rotation)

Credits: http://www.rowland.harvard.edu/labs/bacteria/showrnovie.php?mov=fluo_fil_leave; Alberts, Bray, Lewis, Raff, Roberts, and Watson, Molecular Biology of the Cell, 3rd ed. Garland Publishing, 1993.

14

13

First chemotaxis signal transduction model

Bray, Bourret, and Simon, 1993

Simple model:

- only addressed phospho-relay (no adaptation)
- no spatial, stochastic, or allostery detail
- 8 proteins, 18 reactions
- many guessed parameters

Model predictions vs. mutant data

47 comparisons:

33 agreed, 8 differed, 6 had no experimental data

Quantitative model exploration

Dose-response curve for motor bias after adding different amounts of ligand

Model summary

Successes

- agreed with most mutant data
- · qualitative trends agree with experiment

Failures

- failed for some mutant data
- · some parameters had to be way off from experiment
- · insufficient sensitivity and gain

Conclusions

- pathway is basically correct
- · sensitivity and gain are wrong

Why model biology?

How was modeling used to better understand *E. coli* chemotaxis?

Why model biology?

- Create a precise description of the system focus on important aspects highlight poorly understood aspects a description that we can communicate
- Explore the system
 test hypotheses
 make predictions
 build intuition
 identify poorly understood aspects

22

20

Credit: Andrews and Arkin, Curr. Biol. 16:R523, 2006.

Modeling adaptation

£

0.5

0.0

Total parameter variation

Barkai and Leibler, 1997

Postulated: CheB only demethylates active receptors

- perfect adaptation 1. adaptation robust to variable 2
- protein concentrations

General results:

- Robustness may be common in biology 1.
- 2. Robustness can arise from network architecture

Model for gain and sensitivity

Problem

Experimental aspartate detection range: 2 nM to 100 mM.

From receptor K_D , detection range: 220 nM to 0.7 mM.

Experimental result receptors cluster at poles (Maddock and Shapiro, 1993)

Bray, Levin, and Morton-Firth, 1998

Postulate: receptor activity spreads in the cluster

black = active receptor white = inactive receptor x = ligand

spreading

Credit: Barkai and Leibler, Nature, 387:913, 1997

25

Credit:Maddock and Shapiro, Science, 259:1717, 1993; Bray, Levin, and Morton-Firth, Nature 393:85, 1998

26

Model for gain and sensitivity

Specific results

- Clustering leads to:
- increased sensitivity
- · early saturation

Prediction

- · some receptors are clustered, and some unclustered
- · clustering decreases with adaptation to high attractant

General results

· Many proteins form extended complexes; perhaps they have similar purposes.

Spatial chemotaxis model

A new understanding of E. coli

Why model biology?

Example: E. coli chemotaxis

Typical modeling progression

More modeling progression

System is mapped out	<u>Initial models</u> simple	→	Later models detailed
Too complex	 low accuracy	\rightarrow	good accuracy
for qualitative reasoning	core network specific	\rightarrow	large network general

Class details

class web page on LibGuide: http://campus.fhcrc.org lists class topics, readings, homework

Registration

https://www.surveymonkey.com/s/biologicalmodeling

<u>Textbook</u>: Systems Biology by Klipp et al. (at library or \$85 from Amazon)

33

31

Homework

Things to think about

What aspects of your research are ready for modeling? What might you learn from it?

Reading

Tyson, Chen, and Novak "Sniffers, buzzers, toggles, and blinkers: dynamics of regulatory and signaling pathways in the cell" *Current Opinion in Cell Biology* 15:221-231, 2003.

(link will be on the LibGuides page, http://campus.fhcrc.org)

Workflow for building a model

