PHYS-1050-01,02 Final exam review guide

The final exam will be about 50% on chapter 8 and 50% on prior material. This review guide covers only chapter 8; see other review guides for the other material.

Chapter 8 - Rotational Motion

- Angular position is measured with angle θ . The equations in this chapter assume θ is in radians. 1 rotation = 2π radians = 360° .
- Arc length, *l*, is $l = r\theta$. This is also a good approximation for straight line length at distance *r* if θ is small.

Angular velocity is $\omega = \Delta \theta / \Delta t$, measured in either rad/s or s⁻¹.

- Period, T is time for 1 period. Frequency, f, is rotations per time, $f = 1/T = \omega/2\pi$. 1 rpm is 1 rotation per minute and 1 Hz is 1 rotation per second.
- Angular acceleration is $\alpha = \Delta \omega / \Delta t$, measured in either rad/s² or s⁻².

From arc length, velocity at r is $v = r\omega$ and tangential acceleration at r is $a_{tan} = r\alpha$.

Don't forget that centripetal acceleration is still $a_{cent} = v^2/r$.

Total acceleration is vector sum: $\mathbf{a}_{total} = \mathbf{a}_{tan} + \mathbf{a}_{cent}$.

- Rotational kinematics equations are essentially the same as those for linear kinematics.
- Torque is the rotational force. It is $\tau = F_{\perp}r = Fr \sin \theta$. Measured in N m with the interpretation of being *F* newtons at a radius of *r* meters (in foot-pounds in English system).
- From Newton's second law, $\tau = I\alpha$. More precisely, $\Sigma \tau = I\alpha$, because it is net torque that matters.
- Moment of inertia, *I*, depends on mass and mass distribution. For an object of mass *M* at radius $R, I = MR^2$. Units are kg^{m²}.
- Objects with mass closer to the center have lower moments of inertia. Examples: a disk has $I = 1/2 MR^2$, a rod has $I = 1/12 ML^2$, a sphere has $I = 2/5 MR^2$, etc.

Moment of inertia depends on the rotational axis.

- For objects with multiple components, $I_{total} = I_1 + I_2 + ...$ (assuming same rotational axis).
- Rotational kinetic energy is $KE_{rot.} = I\omega^2/2$, much like $KE_{trans.} = mv^2/2$ for translational case. Energy is in J, as always.

Total kinetic energy is $KE_{total} = KE_{trans.} + KE_{rot.}$

Rotational work is $W = \tau \Delta \theta$, much like $W = F \Delta x$ for translational case.

Angular momentum is $L = I\omega$, much like p = mv for translational case. Units are kg m/s. In the absence of external forces, angular momentum is conserved.

The following quantities are scalars: T, f, I, KE, W.

The following quantities can be vectors: θ , ω , α , τ , L. The vector direction is parallel to the rotational axis, found using the right-hand rule.