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Header file: rxnparam.h 
 
#ifndef __rxnparam_h 
#define __rxnparam_h 
 
/***  LOOK-UP FUNCTIONS FOR REACTION RATES AND BINDING AND UNBINDING RADII  

***/ 
 
double numrxnrate(double step,double a,double b); 
double actrxnrate(double step,double a); 
double bindingradius(double rate,double dt,double difc,double b,int rel); 
double unbindingradius(double pgem,double dt,double difc,double a); 
 
/************    FUNCTIONS FOR INVESTIGATING AN ABSORBING SPHERE    

***********/ 
 
double rdfabsorb(double *r,double *rdf,int n); 
double rdfabsorbprob(double *r,double *rdf,int n,double prob); 
void rdfdiffuse(double *r,double *rdfa,double *rdfd,int n,double step); 
void rdfreverserxn(double *r,double *rdf,int n,double step,double b,double 

flux); 
double rdfsteadystate(double *r,double *rdfa,double *rdfd,int n,double 

step,double b,double eps); 
void rdfmaketable(); 
 
#endif 
 
 
History 
 
12/16/12 Added “.0” to values in rdfmaketable for C++ conformity. 
2/6/17 Added rdfabsorbprob function. 
3/20/18 Added probability input to actrxnrate. 
3/22/18 Added rdfmodelrdf function. 
9/17/18 Largely finalized numrxnrateprob and bindingradiusprob functions 
 
 
Computation errors 

 
I have checked the results from this library quite thoroughly and have found good 

agreement between simulations and theory in nearly all cases.  However, it still returns 
incorrect results in a few cases.  (1) If rms step lengths are less than about 0.05σb, then 
the lookup functions are off of their data tables and so have to either extrapolate tabulated 
results or use analytical theory.  This often works well, but the theory seems to be 



incorrect if σu ~ σb.  (2) If σu < σb and rms step lengths are very small, then the reaction 
rate is enormous and is again off of the tabulated region.  Here, results from numrxnrate 
use cubic interpolations from the known data and those from numrxnrateprob use linear 
interpolations, which can lead to very different results due to the highly non-linear 
structures of the data.  These errors can be explored using the SmolEmulate utility 
program.  See the SmolEmulate documentation for further details. 

 
How to use this library 

 
This library file implements the algorithms that are described in Andrews and Bray, 

2004, and is integral to the Smoldyn program.  It is in the public domain, it is written in 
plain ANSII C, and its only dependencies are to the C Standard Library, in the hopes that 
others will be able to benefit from it as well.  The first four functions that are listed above 
are the only ones that a user should ever need to use.  They can be used to convert 
between macroscopic reaction parameters and the microscopic simulator parameters.  
The first set include the reaction rate constant, the reverse reaction rate constant, the 
activation-limited rate constant, and the probability of geminate recombination, while the 
latter set includes the binding and unbinding radii.  The second set of functions in this 
library were used to generate lookup-tables that the first set uses.  The second set should 
never need to be run by typical library users, but are supplied so that users can see how 
the look-up tables were computed or can use them for further algorithm development. 

For an irreversible bimolecular reaction, find the binding radius with 
 
 bindrad=bindingradius(rate,dt,dsum,-1,0); 
 
rate is the macroscopic rate constant, dt is the simulator time step, and dsum is the sum of 
the two reactant diffusion coefficients.  To verify that this returned the right number, test 
it with the inverse function 
 
 rate=numrxnrate(step,bindrad,0); 
 
step is the mutual rms step length of the reactants, (2(DA+DB)∆t)1/2, and rate should 
equal the rate that was entered in the previous example. 

For the reversible A + B ↔ C reaction, one needs to find both the binding radius for 
the A and B reactants of the forward reaction and the unbinding radius for the A and B 
products of the reverse reaction.  To calculate these, the library requires additional 
information about the association reaction, which could be the unbinding radius, the ratio 
of the binding and unbinding radii, or the probability of geminate recombination.  The 
last one is the only one that has macroscopic meaning.  For these respective three reverse 
reaction parameters (called rparam), the function calls are 
 
 fixed unbinding radius 
 bindrad=bindingradius(rate,dt,dsum,rparam,0); 
 unbindrad=rparam; 
 
 fixed ratio of unbinding radius to binding radius 
 bindrad=bindingradius(rate,dt,dsum,rparam,1); 



 unbindrad=bindrad*rparam; 
 
 fixed probability of geminate recombination 
 bindrad=bindingradius(rate*(1-rparam),dt,dsum,-1,0); 
 unbindrad=unbindingradius(rparam,dt,dsum,bindrad); 
 
For all three options, check that the correct rate is calculated with the inverse function, 
 
 rate=numrxnrate(step,bindrad,unbindrad); 
 
A final option for reversible reactions that Smoldyn allows is for a maximum probability 
of geminate recombination.  This is the default option for Smoldyn, for which the rparam 
value is rather arbitrarily set to 0.2.  The code fragment for addressing it is 
 
 maximum probability of geminate recombination 
 bindrad=bindingradius(rate,dt,dsum,0,0); 
 unbindrad=unbindingradius(rparam,dt,dsum,bindrad); 
 if(unbindrad>0) bindrad=bindingradius(rate*(1.0-rparam),dt,dsum,-1,0); 
 

All of these example are used in Smoldyn.  They can be found in the smolreact.c 
source code file, in the functions rxnsetrate, rxnsetproduct, and rxncalcrate. 

 
 

Math for cubic interpolation functions 
 

Interpolation is done in a few functions here with simple cubic interpolation.  This 
might be formally identical to the cubic spline algorithm that is described in Numerical 
Recipes in C, although it is a completely different implementation and so might lead to 
different results.  My implementation is probably not as fast for long lists of input values, 
but has more transparent code, is fully contained within a single function, and is probably 
nearly as fast as their method for only a few input values. 

Consider input vectors Xi and Yi, which define the known values and the input value 
x for which the unknown y is wanted.  First, the position of x in the Xi vector is found, 
then the four Xi values that surround x are copied over into x0 to x3 such that x is between 
x1 and x2.  Then, Lagrange’s formula (see Numerical Recipes in C), is used to define the 
four polynomial coefficients as: 
 

 z0 =
x − x1( ) x − x2( ) x − x3( )
x0 − x1( ) x0 − x2( ) x0 − x3( ) = −

x − x1( ) x − x2( ) x − x3( )
6Δx3

 

 

 z1 =
x − x0( ) x − x2( ) x − x3( )
x1 − x0( ) x1 − x2( ) x1 − x3( ) =

x − x0( ) x − x2( ) x − x3( )
2Δx3

 

 

 z2 =
x − x0( ) x − x1( ) x − x3( )
x2 − x0( ) x2 − x1( ) x2 − x3( ) = −

x − x0( ) x − x1( ) x − x3( )
2Δx3

 



 

 z3 =
x − x0( ) x − x1( ) x − x2( )
x3 − x0( ) x3 − x1( ) x3 − x2( ) =

x − x0( ) x − x1( ) x − x2( )
6Δx3

 

 
The first form allows unequally spaced x values, whereas the latter form assumes 
constant spacing on x of ∆x.  For interpolation on just one axis, the result is 
 
 y = z0y0 + z1y1 + z2y2 + z3y3  
 
It doesn’t matter if the input x value is too close to an edge of the tabulated data for it to 
be centered among 4 values, because exactly the same method is done if it is just one 
value in from the edge, or if extrapolation is required to go beyond the edge.  For 
interpolation on two axes, interpolation is done four times on one axis to find 4 new y 
values; then it is done once on the other axis with these four y values.  This is fairly 
obvious if a grid is drawn.  While I haven’t proven it, I suspect that the exact same result 
is gotten regardless of which axis is interpolated on first. 

 
 

Utility functions 
 

double modelrxnrate(double a,double b,double difc,double chi); 
 This returns the steady-state reaction rate constant for continuous time models.  

Enter the binding radius in a, the unbinding radius in b, the mutual diffusion 
coefficient in difc, and the fraction diffusion-limited in chi.  For the Smoluchowski 
model, set chi to 1.  For irreversible reactions, set b to -1. 

 
 The returned functions are 
  irreversible: k = 4πDσ bχ   

  reversible: k = 4πDσ bσ uχ
σ u −σ b

= 4πDσ bχ
1−φS

  

 Note that φS = σb/σu is the probability of geminate recombination in the 
Smoluchowski model.  The function returns -1 if σu ≤ σb, which should be 
interpreted as a value of infinity. 
 
 

Look-up functions for reaction rates and binding and unbinding radii 
 

The functions in this section are used by Smoldyn, and may be useful for other 
programs.  They return binding and unbinding radii for bimolecular reactions, assuming a 
numerical version of the Smoluchowski model of chemical reactions, in which fixed size 
time steps are used. 
 
double numrxnrate(double step,double a,double b); 
 numrxnrate calculates the bimolecular reaction rate constant for the simulation 

algorithm, based on the rms step length in step, the binding radius in a, and the 



unbinding radius in b.  It uses cubic polynomial interpolation on previously 
computed data, with interpolation both on the reduced step length (step/a) and on 
the reduced unbinding radius (b/a).  Enter a negative value of b for irreversible 
reactions.  If the input parameters result in reduced values that are off the edge of 
the tabulated data, analytical results are used where possible.  If there are no 
analytical results, the data are extrapolated. 

 
 Variable components: s is step, i is irreversible, r is reversible with b>a, b is 

reversible with b<a, y is a rate.  The returned value is the reaction rate times the 
time step ∆t.  In other words, this rate constant is per time step, not per time unit; it 
has units of length cubed. 

 
double numrxnrateprob(double step,double a,double b,double prob); 
 Calculates the simulated bimolecular reaction rate for a given rms step length, in 

step, the binding radius in a, unbinding radius in b, and reaction probability in prob.  
Enter a negative value for b for irreversible reactions. If prob equals 1, this calls 
numrxnrate for the answer instead.  This also caps the returned result so that it is 
always less than or equal to that for numrxnrate; it would be larger in some cases, 
generally when the probability is close to 1, due to differences between linear and 
cubic interpolation. 

 
 This uses linear interpolation between tabulated values, with interpolation on the 

reduced step length, reduced unbinding radius, and reaction probability.  As with 
numrxnrate, variables are s for step, i for irreversible reactions, r for reversible with 
b>a, and b for reversible with b<a.  This uses k for rate.  Tabulated data are: kirr 
has rows with probability and columns with step length (e.g. index it with 
kirr[pindx*snum+sindx]), krev has layers with b value, rows with probability, and 
columns with step (e.g. index as krev[bindx*snum*pnum+pindx*snum+sindx]), and 
kb has the same as krev.  The tabulated data were computed by the 
rdfmaketableprob function, called by the SmolEmulate program.  Note that the 
tabulated data are in order of increasing unbinding radii, probabilities, and steps, 
except for the kb table, which uses decreasing steps. 

 
 For linear interpolation, suppose we have a known x vector.  Define a as a table 

coordinate in which all components are less than those of x and b as a table 
coordinate in which all components are larger than those of x.  In 2-D for 
simplicity, the weights of the 4 adjacent table points are 

  w00 =
b1 − x1( ) b2 − x2( )
b1 − a1( ) b2 − a2( )   w01 =

b1 − x1( ) x2 − a2( )
b1 − a1( ) b2 − a2( )   

  w10 =
x1 − a1( ) b2 − x2( )
b1 − a1( ) b2 − a2( )   w00 =

x1 − a1( ) x2 − a2( )
b1 − a1( ) b2 − a2( )   

 This extends trivially for higher dimensions.  Then combine these to give the 
interpolated y value as 

  y = w00y00 +w01y01 +w10y10 +w11y11   
 Again, this extends trivially for higher dimensions. 



 
 The returned value is the reaction rate times the time step ∆t.  In other words, this 

rate constant is per time step, not per time unit; it has units of length cubed. 
 
 Function status as of 6/28/18: everything seems to basically work. However, the 

data quality could be improved, and also perhaps changed for better sampling 
points.  Graphing the results shows artifacts when b=1 and b<1, especially for small 
step values. 

 
double actrxnrate(double step,double a,double prob); 
 actrxnrate calculates the effective activation-limited reaction rate for the 

simulation, which is the reaction rate if the radial correlation function is 1 for all r > 
a.  The returned value needs to be divided by ∆t.  The equation is 
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 It was calculated analytically and verified numerically. This equation, without the 

reaction probability, appears in Andrews and Bray, 2004.  This function is largely 
obsolete because I now feel that the activation-limited reaction rate is better defined 
through the Noyes relation (k-1 = kS

-1+ka
-1). 

 
double bindingradius(double rate,double dt,double difc,double b,int rel); 
 bindingradius returns the binding radius that corresponds to some given 

information.  rate is the actual rate constant (not reduced), dt is the time step, and 
difc is the mutual diffusion constant (sum of reactant diffusion constants).  If b is -
1, the reaction is assumed to be irreversible; if b ≥ 0 and rel = 0, then the b value is 
used as the unbinding radius; and if b ≥ 0 and rel = 1, then the b value is used as the 
ratio of the unbinding to binding radius, b/a. 

 
 This algorithm executes a simple search from numrxnrate, based on the fact that 

reaction rates monotonically increase with increasing a, for all the b value 
possibilities.  The return value is usually the binding radius.  However, a value of -1 
signifies illegal input parameters. 

 
 Modified 2/22/08 to allow for dt = 0. 
 
 If σu is known, enter b = σu and rel = 0. 
 If σu/σb is known, enter b = σu/σb and rel = 1. 
 If φ (geminate recombination) is known, rate = k(1-φ), b = 0, and rel = 0. 
 
double bindingradiusprob(double rate,double dt,double difc,double b,int 

rel,double chi,double *probptr); 
 This is the same as bindingradius, but allows non-unit reaction probabilities (i.e. 

it’s for the λ-ρ algorithm rather than the Andrews-Bray algorithm).  rate is the 
actual rate constant (not reduced), dt is the time step, difc is the mutual diffusion 



coefficient, b is the unbinding radius (or send in b < 0 for irreversible reaction), rel 
tells whether the b value is relative to the binding radius or is absolute, and chi is 
the diffusion-limited fraction.  Enter chi as a negative value to indicate that it’s not 
known; if it’s not known and no probability is entered in probptr, then this function 
calls bindingradius instead.  For most uses, enter probptr as a pointer to a reaction 
probability value that will get set by this algorithm; however, if chi is entered 
negative, then enter the reaction probability with probptr.  This returns the binding 
radius directly and the reaction probability pointed to by probptr. 

 
 If dt is set to 0, then this function uses analytical equations to compute the binding 

radius and it returns the λ-ρ algorithm λ value with probptr.  To do so, this function 
computes the reduced λ-ρ algorithm reaction rate constant λ' using the function 

   ′λ = 3.18243χ − 3.40864χ 2 + 0.984385χ 3

1− χ( )2.08761
  

 from my Notes18C06 file, and then unreduces it. 
 
 The function runs a greedy directed search algorithm. It cycles through the search 

parameters (a and prob, here) up to 300 times each, or until the error is less than 1 
part in 106.  At each iteration, it tries moving in the same direction as last time.  If 
that improved the result, it keeps the result and increases the step size for next time; 
if it led to a worse result, it keeps the prior result, reverses direction, and 
substantially reduces the step size.  Tests on this procedure shows that it works 
remarkably well, with the error typically oscillating at first and then decreasing 
roughly log-linearly. 

 
double unbindingradius(double pgem,double dt,double difc,double a); 
 unbindingradius returns the unbinding radius that corresponds to the geminate 

reaction probability in pgem, the time step in dt, the mutual diffusion constant in 
difc, and the binding radius in a.  Illegal inputs result in a return value of -2.  If the 
geminate binding probability can be made as high as that requested, the 
corresponding unbinding radius is returned.  Otherwise, the negative of the 
maximum achievable pgem value is returned. 

 
 Modified 2/25/08 to allow for dt = 0. 
 
 
Functions for investigating an absorbing sphere 
 

The functions in this section were used to calculate the look-up tables that are used 
in the preceding functions.  They are not used by Smoldyn.  It is not anticipated that they 
will be required for most other programs either, although they may be useful for 
improving the look-up tables or for additional algorithm development. 
 
double rdfmodelrdf(double r,double sigmab,double sigmau,double lambdap,double 

gamma); 



 Computes the analytical radial distribution function for the Smoluchowski, Collins 
and Kimball or Doi models, for either reversible or irreversible reactions.  
Equations are from my Notes18C06 document. Enter the radius to be evaluated in r 
and the binding radius in sigmab.  Enter the unbinding radius in sigmau (which must 
be larger than sigmab) for reversible reactions or as a negative value for reversible 
reactions.  Enter the Collins and Kimball boundary parameter in gamma if that model 
is used or enter gamma as a negative value if that model is not used.  Enter the 
reduced Doi model reaction rate in lambdap if that model is used or enter lambdap as 
a negative number if it is not used. 

 
 For the Collins and Kimball model, the boundary condition is 

  ∂g r( )
∂r σ b

=
g σ b( )
γ

  

 Sometimes κ is used instead, where γ = D/κ and D is the diffusion coefficient. For 
the Doi model, the reduced reaction rate is 

  ′λ =σ b
λ
D

  

 where λ is the unreduced reaction rate. 
 
double rdfabsorb(double *r,double *rdf,int n,double bindrad,double prob); 
 rdfabsorb integrates the radial diffusion function (rdf) for 0 ≤ r ≤ bindrad, sets 

those values to 0 (if prob equals 1), and returns the integral.  Absorption can also be 
probabilistic, with probability prob.  r is a vector of radii; r[0] may equal zero but 
that is not required; if not, then it is assumed that the rdf has zero slope at the origin.  
Conceptually, this returns 

  flux = P 4πr2g r( )dr
0

σ b

∫   

 where P is the probability, and g(r) is the rdf. 
 
 Integration uses a spherical version of the trapezoid rule: at positions r0 and r1, the 

function f has values f0 and f1, leading to the linear interpolation 
 

  f =
r − r0( ) f1 + r1 − r( ) f0

r1 − r0
 

  

A = 4πr2 f r( )dr
r0

r1

∫

= 4π
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f1 − f0( ) r14 − r04( )
4

+
r1 f0 − r0 f1( ) r13 − r03( )
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= π f1 − f0( ) r1 + r0( ) r12 + r02( ) + 4π3 r1 f0 − r0 f1( ) r12 + r1r0 + r02( )

 

 



 The left end of the integral assumes zero slope for the rdf.  The right end does not 
terminate exactly at 1, but includes the upper left triangle of the final trapezoid.  
That way, if there are two absorptions in a row, the second one will return an 
integral of 0, and area is properly conserved.  The problem is that it does not 
terminate exactly at 1.  Furthermore, the correct relative location of 1 between two 
r[j] points depends on the function.  The best solution is to use an unevenly spaced 
r[j] vector, with a very narrow separation about 1 and no r[j] equal to 1. 

 
 If prob is not entered as 1, the area returned is prob times the total area between 0 

and bindrad, and the rdf is modified to represent prob fraction of the area removed. 
 
void rdfdiffuse(double *r,double *rdfa,double *rdfd,int n,double step); 
 rdfdiffuse integrates the radial distribution function with the Green's function for 

radially symmetric diffusion to implement diffusion over a fixed time step.  r is a 
vector of radii, rdfa is the input rdf, rdfd is the output rdf, n is the number of points, 
and step is the rms step length, equal to (2Dt)1/2.  r[0] may equal 0 but it is not 
required.  It is assumed that rdfa has zero slope at r = 0.  The boundary condition 
on the large r side is that the function tends to 1 with a functional form 1+a2/r, for 
large r.  This is accomplished by fitting the 10% largest r portion of the rdf with the 
function 1+a2/r.  After the integral over the tabulated data is complete, the rdf is 
integrated on to infinity using the previous fit information and an analytical result 
for that integral.  The numerical portion of the integral is carried out exactly like the 
one in rdfabsorb but with a different integrand, which is 

 

  c r( ) = 4π ′r 2 rdfa ′r( )grn r, ′r( )d ′r
0

∞

∫  

 
 grn(r,r') is the Green's function, equal to 
 

  grn r, ′r( ) = 1
4πr ′r

Gs r − ′r( ) −Gs r + ′r( )⎡⎣ ⎤⎦  

 
 and Gs(x) is a normalized Gaussian with mean 0 and standard deviation s.  It is 
 

  Gσ x( ) = 1
σ 2π

exp −
x2

2σ 2

⎛
⎝⎜

⎞
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 Note that the Green’s function is given in Carslaw and Jaeger, 14.7(1) (page 366).  

To convert from their notation to mine, replace κ with D and (2Dt)1/2 with s.  Also, 
in the limit that r goes to 0, the Green’s function approaches 

 

  grn 0, ′r( ) = 1
2πs2

Gs ′r( )   

 



 Math for fitting the final 10% of the rdf to the function y = a1+a2/r.  (From my 
Cambridge notes p. G-5.)  Following Numerical Recipes, define: 
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  α = AT A   β = ATb   

 
 Best fit is for a1 and a2 values given with 
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 which solves to 
 

  a1 =
β1α 22 − β2α12

α11α 22 −α12α 21

   a2 =
β2α11 − β1α 21

α11α 22 −α12α 21

  

 
 with 
 

  α11 = n   α12 =α 21 =
1
xii

∑   α 22 =
1
xi
2

i
∑   β1 = yi

i
∑   β2 =

yi
xii

∑   

 
 This function uses a simplified version of this derivation, for the fitting function y = 

1+a2/x, or y-1 = a2/x.  The above variables simplify to 
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void rdfreverserxn(double *r,double *rdf,int n,double step,double b,double 

flux); 
 Analysis of the reverse reaction involves adding a delta function to the rdf and then 

convolving with the Green's function.  However, this leads to numerical errors, 
although it is trivial analytically.  The function rdfreverserxn is the analytic 
solution.  It adds the diffusion Green's function to the rdf, based on a delta function 
at b, and after one diffusion step.  r is a list of radii, rdf is the rdf, step is the rms 
step length, b is the delta function point (which does not have to be equal or unequal 
to a r[j] value), and flux is the area of the delta function. 

 
double rdfsteadystate(double *r,double *rdfa,double *rdfd,int n,double 

step,double a,double b,double eps,double prob); 



 rdfsteadystate calculates the radial distribution function (rdf) for alternating 
absorption and diffusion steps, for either irreversible or reversible reactions.  r is a 
vector of radii, rdfa is input as a trial rdf and output as the result after absorption, 
rdfd is ignored on input but is output as the rdf after diffusion, n is the number of 
elements in the vectors, step is the rms step length, a is the binding radius, and b is 
either <0 if the reaction is irreversible or is the unbinding radius if the reaction is 
reversible.  It executes until the fractional difference between successive steps is 
less than eps, but at least 30 times and no more than maxit times.  It can also exit if 
it iterates more than maxit times before converging or if the flux exceeds maxflux; if 
either of these happens, the function returns -1. 

 
void rdfmaketable(); 
 rdfmaketable is used to create data tables of reaction rates, including those used 

above in numrxnrate.  Most input is requested from the user using the standard input 
and all output is sent to standard output.  Runtime is about 1 minute with mode i, 
200 pts, eps=1e-4. 

 
void rdfmaketableprob(); 
 Makes data tables of reaction rates as a function of reduced rms step lengths, 

unbinding radii, and reaction probabilities.  Most input is requested from the user 
from the standard input and all output is sent to standard output.  In most cases, the 
data are best exported to Excel, manipulated there, reformatted, and then pasted into 
the numrxnrateprob function. 


