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Header, part I 
 

The entire header file is quite long, so is not reproduced here.  However, some of 
the earlier lines are important: 

 
#ifndef __random2_h 
#define __random2_h 
 
// Comment out the following line if the Mersenne Twister is unavailable 
#include "SFMT/SFMT.h" 

 
The first portion is just the usual definition to prevent multiple inclusions of the header 
file.  The SFMT line includes the Mersenne Twister (SFMT) header file.  If the SFMT is 
unavailable, just comment out the line, which will cause the system-supplied random 
number generator to be used instead.  No other modifications are required in the code. 
A test of a short program in which most of the time was spent in getting random numbers 
took 4.64 s with the SFMT and 4.05 s with the Macintosh system-supplied random 
number generator. 
 
 
History 
 

My library file random.c was started 5/12/95 and modified on a regular basis up to 
11/13/06.  It used the system-supplied random number generator exclusively.  On 
4/18/08, I rewrote it and saved the new version as random2.c, which fully supercedes the 
old version.  This new version replaces the macro define statements with inline functions 
and allows the use of either the SFMT random number generator or the system-supplied 
random number generator.  Changed intrandp to allow for unscaled cumulative 
probabilities 6/2/08.  Added randtableshuffleV 4/4/11; edited shuffling functions 4/6/11 
to use the exact Fisher-Yates algorithm. 

12/~15/12 Minor change to sphererandCCF for C++ conformity. 
 Changed radrandsphCCF declaration and code for trivial bug fix (type issue). 
 Changed variable names in sphererandCCD and sphererandCCF to avoid name 

collisions with something else. 
 
 
Compiling 
 

To use a program that uses this library (on my computer, where the SFMT file is 
compiled separately), it’s mostly the same as with any other library file: use a #include in 
the code and list the obect code in the Makefile.  The only other addition is that the object 
file SFMT.o needs to be listed as well if the SFMT random number generator is used. 



Either the SFMT random number generator or the system-supplied random number 
generator can be used.  Also, the SFMT generator can be compiled in a variety of ways.  
On my computer, I enable the SSE2 option, for good speed, but can’t use the AltiVec 
option. 
 
 
Description 
 

Most of these functions return random numbers, chosen from a variety of densities.  
Each function name contains a suffix that tells the type of the arguments and return value, 
such as ‘F’ for float, ‘D’ for double, and “ULI” for unsigned long int.  Also, this suffix 
often contains either ‘C’ or ‘O’ letters to designate closed or open boundaries for the 
random number interval. 

A lot of functions are defined in the header file as inline static functions, so that 
they will be copied over each time that they are referenced, which speeds execution. 

If the Mersenne Twister is used, the random number generator needs to be 
initialized before it can be used.  This is done with the randomize function. 

 
 

Math 
 

Math for various densities 
Note that 1.0*rand()/RAND_MAX returns a uniform density on [0,1] and 

(rand()+1.0)/(RAND_MAX+1.0) is uniform on (0,1].  The functions randCCD and randOCD 
also return random numbers with these respective densities.  To convert these uniform 
densities to the density ρ(x), first calculate the cumulative probability P(x) = –∞∫xρ(x')dx', 
where it is seen that P(x) is 0 at x = –∞ and 1 at x = ∞.  If the value for y = P(x) is chosen 
with a uniform density, its value mapped onto x has the desired density.  Thus, a function 
should return  x = P–1(y). 

If you want an event to happen with probability x, then make it happen if 
randCOD()<x. 

 
Pseudo-random number issues 

The CodeWarrior compiler on a Macintosh has RAND_MAX equal to 215–1, whereas it 
is 231–1 for the gcc compiler on Linux (I’m not sure which gcc version).  The SFMT has a 
maximum value of 232–1, which is a little better yet.  It also allows 64-bit numbers, but I 
don’t use them.  Few numbers become a significant problem when rare events are 
required.  For example, with the Macintosh numbers, it is possible to have an event 
happen an average of exactly 1 time per 32,767 iterations, or exactly 2 times, or so on, 
but not 1.5 times.  If the random number generator isn’t perfect, then the options are at 
least as sparse and with unknown intervals. 

  For the most part, I have not had any trouble with the randomness quality on a 
Macintosh, although in one instance I found net diffusion of randomly moving particles 
towards the center of the volume; this undoubtedly arose from an imperfect random 
number generator, although the precise problem is unclear.  I solved it by shuffling the 
lookup table that I was using. 



 
Math for trianglerandD 

The “easy” problem is to find a random point in a 2-dimensional triangle which has 
been arranged so that point numbers 0, 1, and 2 have x values that increase from 0 to 1 
and from 1 to 2.  Suppose this is the case.  The triangle point coordinates are (x0,y0), 
(x1,y1), and (x2,y2).  From these, one can calculate the slopes from one point to another: 

 

 m01 =
y1 − y0
x1 − x0

 m02 =
y2 − y0
x2 − x0

 m12 =
y2 − y1
x2 − x1

 

 
Also, one can calculate the triangle area as the distance that y1 is above the 0-2 line, 
measured parallel to the y-axis, times the x distance between points 0 and 2, divided by 
two: 
 

 A =
1
2

y1 − y0( ) − m02 x1 − x0( )⎡⎣ ⎤⎦ x2 − x0( )  

 
This area is positive if y1 is above the 0-2 line and negative if it is below.  The integral of 
the triangle area, starting from point 0 and then normalized with respect to the triangle 
area, is found to be 
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This function is 0 at x = x0, 1 at x = x2, and increases monotonically in between.  At x1, the 
value can be calculated from either function to be 
 

 
Y x1( ) = 1

2A
m01 − m02( ) x1 − x0( )2

= 1− 1
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m02 − m12( ) x1 − x2( )2
 

 
The inverse of the function is used to find a random x value given a uniformly distributed 
random Y value: 
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This solves the problem of finding a random x-coordinate within the triangle.  Next, a 
random y-coordinate is found.  The y range at position x is 
 

 y ∈ y0 + m02 x − x0( ), y0 + m01 x − x0( ) x0 ≤ x ≤ x1
y1 + m12 x − x1( ) x1 ≤ x ≤ x2
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A random y value is chosen within this range using a uniform density.  Thus, the problem 
of finding a random set of coordinates within a triangle is solved for the simple case.  
Additional complexity arises from having to order the points. 

For three-dimensions, the function calculates the unknown coordinate value by first 
finding the equation for the plane that includes the 3 triangle points, and then using it to 
find the unknown.  The equation of a plane is 
 
 cxx + cyy + czz + ck = 0  
 
From the website local.wasp.uwa.edu.au/~pbourke/geometry/planeeq/, with minor 
notational changes, the equations for the coefficients cx, cy, cz, and ck, from the three 
triangle points, are 
 

 

cx = y1(z2 − z3) + y2 (z3 − z1) + y3(z1 − z2 )
cy = z1(x2 − x3) + z2 (x3 − x1) + z3(x1 − x2 )
cz = x1(y2 − y3) + x2 (y3 − y1) + x3(y1 − y2 )
− ck = x1(y2z3 − y3z2 ) + x2 (y3z1 − y1z3) + x3(y1z2 − y2z1)

 

 
From the plane equation, the unknown z value is calculated for the random point from the 
known x and y values. 
 

 
Function summary 

 
The table below shows the domain, range, and densities of the functions given here.  

The domains are the suggested domains, although larger domains can sometimes be used 
as well.  For example, coinrand can accept an input anywhere between –∞ and ∞, 
although the function always returns 0 if p < 0 and 1 if p > 1.  The densities are only 
strictly correct in the limit that RAND2_MAX approaches infinity.  In regions where the 
density is small (where ρ(x)∆x ≈ 1/RAND2_MAX, for some characteristic ∆x), a small set of 
random numbers is mapped to a large output range, leading to relatively sparse coverage. 

 
Name Domain Range Density 
randCCD  [0,1] 1 
randCOD  [0,1) 1 
randOCD  (0,1] 1 
randOOD  (0,1) 1 
randULI  {0,1,…,RAND2_MAX} 1/RAND2_MAX 
unirandCCD (–∞,∞)2 [lo,hi] 1/|hi–lo| 



unirandCOD (–∞,∞)2 [lo,hi) 1/|hi–lo| 
unirandOCD (–∞,∞)2 (lo,hi] 1/|hi–lo| 
unirandOOD (–∞,∞)2 (lo,hi) 1/|hi–lo| 
signrand  {–1,1} {0.5,0.5} 
coinrandD [0,1] {0,1} {1–p,p} 
intrand [1,∞) {0,1,…,n–1} {1/n,1/n,…,1/n} 
exprandCOD [0,∞) [0,∞) 1/a*exp(–x/a) 
 (–∞,0] (–∞,0] 1/a*exp(–x/a) 
logscalerandCCD  (0,∞),(min,∞) [min,max] uniform on log scale 
powrandCOD (–∞,∞),(–∞,–1) [xmin,∞) (1–m)/xmin*(x/xmin)m 
radrandcircCCD (–∞,∞) [0,r] 2x/r2 
radrandsphCCD (–∞,∞) [0,r] 3x2/r3 
thetarandCCD  [0,π] 1/2*sin(x) 
unirandsumCCF n>0, all m,s [m–s√(3n),m+s√(3n)] ≈Gaussian with mean m, std. dev. s 
intrandpD n>0, 0≤pi≤1 {0,1,…,n–1} {p0,p1-p0,…,1-pn-2} 
poisrandD (–∞,∞) [0,∞) Poisson with mean xm 
binomialrandF [0,1],[0,∞) [0,n] Binomial deviate, prob. p, n trials 
gaussrandD  (–∞,∞) Gaussian with mean 0, std. dev. 1 
sphererandCCD [0,∞)2 [–rad2,rad2]3 Point in spherical shell 
trianglerandCD [0,∞)2 [–rad2,rad2]3 Point in spherical shell 
 
 
Defines 
 

The following defines are from the SFMT portion of the header.  The same ones, 
but sometimes with different replacement text are used in the system-supplied random 
number generator. 
 
#define RAND_BITS 32 
 This is the number of bits in a pseudo-random number that is gotten with the 

function randULI.  It’s 32 for the SFMT and 30 for the system-supplied generator (if 
the system-supplied generator has a different value, multiple random numbers are 
concatenated or a random number is trimmed down to yield exactly 30 bits). 

 
#define RAND_MAX_30 1073741823 
 This is 230–1, which is the largest random integer possible if rand30 is used. 
 
#define rand30() (gen_rand32()&RAND_MAX_30) 
 Returns a random integer with exactly 30 bits.  How it’s done depends on whether 

the SFMT is used or the system-supplied generator. 
 
 
Functions (some header, some main file) 
 
inline static double randCCD(void); 
inline static double randCOD(void); 
inline static double randOCD(void); 
inline static double randOOD(void); 
inline static float randCCF(void); 
inline static float randCOF(void); 
inline static float randOCF(void); 



inline static float randOOF(void); 
 All of these functions do basically the same thing, which is return a real-valued 

random number that is between 0 and 1.  The last letter is ‘D’ or ‘F’ to indicate 
whether the number is returned as a double or a float, respectively.  There is no 
speed benefit to using the float option if the SFMT is used, whereas there may be a 
benefit if the system-supplied random number generator is used.  The underlying 
random number has 32 bits with SFMT, 30 with the system-supplied ‘D’ option, 
and whatever the system offers naturally with the system-supplied ‘F’ option.  The 
preceding two letters tell whether the endpoints at 0 and 1, respectively, are closed 
or open (‘C’ or ‘O’, respectively).  Thus, for example, randCOD() returns a double 
that is on the interval [0,1). 

 
inline static unsigned long int randULI(void); 
 This returns a random unsigned long int with RAND_BITS bits, which is between 0 

and RAND2_MAX, inclusive. 
 
long int randomize(long int seed); 
 Sets the random number generator seed to seed if the value is ≥0 or to the current 

time value if seed is <0.  The seed that was used is returned. 
 
inline static double unirandCCD(double lo,double hi); 
inline static double unirandOCD(double lo,double hi); 
inline static double unirandCOD(double lo,double hi); 
inline static double unirandOOD(double lo,double hi); 
inline static float unirandCCD(float lo,float hi); 
inline static float unirandOCD(float lo,float hi); 
inline static float unirandCOD(float lo,float hi); 
inline static float unirandOOD(float lo,float hi); 
 Returns a uniformly distributed random number between lo and hi.  The same 

suffix designations apply here as for the rand*() functions.  Usually lo is less than 
hi, but they can also be equal or swapped.  The sequence of open or closed 
designations in the function correspond to the variables lo and hi, respectively, 
regardless of their input values. 

 
inline static int signrand(void); 
 Returns ±1 with equal probability of each. 
 
inline static int coinrandD(double p); 
inline static int coinrandF(float p); 
 Returns 1 with probability p, and 0 otherwise. 
 
inline static int intrand(int n); 
 Returns an integer between 0 and n–1, inclusive, each with uniform probability.  

The probability distribution is correct if n is an integer power of 2, quite good if n is 
a small integer, and poor if n is a significant fraction of 2RAND_BITS and not a power of 
2. 

 
inline static exprandCOD(double a); 



 Returns an exponentially distributed random number between (and including) 0 and 
±∞ (same sign as a) with a characteristic value of a. 

 
inline static double logscalerandCCD(double min,double max); 
 Returns a random number that is exponentially distributed between min and max, 

including both ends.  Use this function for a uniformly distributed random variable 
for a variable that is plotted on a log axis. 

 
 Math.  Suppose x’ is a uniformly chosen random variable between ln min and ln max 

(this is easiest to envision with base 10 logs and a log x axis).  Then, ex’, is the 
desired value.  Therefore, x’ = unirandCCD(ln min,ln max) and x = 
exp(unirandCCD(ln min,ln max).  I’m not sure what the actual probability density is. 

 
inline static powrandCOD(double xmin,double power); 
 Returns a random number chosen from a power law distribution with slope power, 

which needs to be <–1.  xmin is typically positive, in which case it is the smallest 
number that can be returned; it can also be negative, which just switches the sign of 
the returned value. 

 
inline static radrandcircCCD(double r); 
 This is intended for use in choosing a random radius within a circle of radius r.  In 

combination with a random angle (uniform between 0 and 2π), this yields a random 
point uniformly distributed within the circle. 

 
inline static radrandsphCCD(double r); 
 This is intended for use in choosing a random radius within a sphere of radius r.  In 

combination with a random spherical angle, this yields a random point uniformly 
distributed within the sphere. 

 
inline static double thetarandCCD(void); 
 This is intended for use in choosing a random θ direction in spherical coordinates.  

The answer is between 0 and π, inclusive, where 0 is parallel to the z-axis and π is 
antiparallel. 

 
double unirandsumCCD(int n,double m,double s); 
float unirandsumCCF(int n,float m,float s); 
 This adds together n random variables from a uniform density and then scales the 

sum to yield a mean of m and standard deviation s.  It’s a quick alternative for a 
Gaussian-like density, although not as fast or as well distributed as a look-up table 
and interpolation (see randtable), and also less good than gaussrandD.  This 
function used to be misleadingly named binomrand. 

 
int intrandpD(int n,double *p); 
int intrandpF(int n,float *p); 
 This is similar to intrand, but allows non-uniform probabilities for each integer.  p 

is sent in as a list of unscaled cumulative probabilities for each integer.  Since they 
are cumulative, p is an increasing list of non-negative numbers.  If they are scaled 



then pn-1 equals 1; they may also be unscaled, meaning that each cumulative 
probability is effectively divided by pn–1.  Results will always be between 0 and n-1, 
even with incorrect p values. 

 
int poisrandD(float xm); 
int poisrandF(float xm); 
 Returns an integer chosen from a Poisson density with mean xm, which will 

typically be in the range xm±√xm.  This routine is copied almost verbatim from 
Numerical Recipies.  A feature which the book routine has and which is kept here is 
that if the routine is called more than once with the same value of xm, it doesn’t 
recalculate some variables, in order to speed up the routine.  Negative values of xm 
are possible but always return a value of 0. 

 
float binomialrandF(float p,int n); 
 Returns a random integer (as a float) chosen from a binomial distribution for n 

trials, each with probability p.  It is the number of successes for these n trials.  The 
routine was copied nearly verbatim from Numerical Recipies. 

 
double gaussrandD(); 
float gaussrandF(); 
 Returns a normal deviate with mean 0 and standard deviation 1 using the Box-

Muller transformation described in Numerical Recipies. 
 
void circlerandD(double *x,double radius); 
 Returns a 2-dimensional random point in x which is uniformly distributed on the 

circle that has radius equal to radius. 
 
void sphererandCCD(double *x,double rad1,double rad2); 
void sphererandCCF(float *x,float rad1,float rad2); 
 Returns a 3 dimensional point in x which is uniformly distributed within a spherical 

shell bounded on the inside by rad1 and the outside by rad2 (both inclusive).  For a 
fixed radius, set both rad1 and rad2 to the radius.  The input contents of x are 
ignored although it needs to be allocated to at least size 3. 

 
void ballrandCCD(double *x,int dim,double radius); 
 Returns a dim dimensional point in x which is uniformly distributed within a ball of 

radius radius. 
 
 This algorithm, which is partly from the internet, is as follows.  First, the x vector is 

set to Gaussian distributed random numbers because these create a symmetric 
distribution about the origin in dim-dimensional space.  Dividing the x vector by the 
actual radius of the x vector about the origin (rad) leads to a value that is uniformly 
distributed on the surface of the unit ball.  Then, a random radius is generated as 
RU1/dim, where R is the ball radius and U is a uniform random value between 0 and 1.  
These two scalings are combined into a single line here. 

 
void trianglerandCD(double *pt1,double *pt2,double *pt3,int dim,double *ans); 



 Given a triangle defined by the three Cartesian coordinates pt1, pt2, and pt3, each 
of which has dimensionality dim, this returns in ans the Cartesian coordinates for a 
random point within the triangle using a uniform density.  The triangle edges are 
included with the triangle.  This function should work for all possible inputs with 2 
or 3 dimensions.  I’m fairly sure that it yields incorrect answers for dim>3. 

 
 If the system is two-dimensional, this function first copies over the x and y values 

for the points such that the new x values are non-decreasing from point 0 to point 1 
to point 2; then it uses the math presented above to find a random location.  It 
should be valid even if x and/or y values equal each other.  If the system is more 
than two dimensional, this finds the dimension that the triangle has the smallest 
range on, puts that at the end, calls itself recursively to find a random point in the 
reduced dimensional space, calculates the remaining coordinate, and swaps back.  
The calculation of the remaining coordinate is also explained above in the math 
section.  It should be reasonably easy to extend the unknown coordinate calculation 
for arbitrary dimensional space, but I haven’t done that yet. 

 
void randtableD(double *a,int n,int eq); 
void randtableF(float *a,int n,int eq); 
 This fills in a lookup table with entries for quickly converting a uniform density to 

an alternate density, using eq to indicate which density is desired.  n is the number 
of elements in the table.  If eq is 1, the density is a normal density with mean 0 and 
standard deviation 1; returned values range from –erf–1(0.5/n–1) to erf–1(0.5/n–1).  
For example, if rt is a table with 1024 elements, the following expression would 
return a normally distributed random variable with mean mu and standard deviation 
sd: x=mu+sd*rt[randULI()&1023], also the range is from –3.297 to 3.297.  Clearly, 
there are only n possible outcomes in this expression, which could be corrected by 
linear interpolation and somewhat slower and lengthier code.  If eq is 2, the density 
is from the part of a complementary error function for x ≥ 0, scaled so that the 
standard deviation of the underlying Gaussian is 1.  In this case, 
x=sd*[randULI&1023] yields a random number for corresponding standard deviation 
of sd.  The range is 0.0004 to 3.186.  Currently, no other eq values are recognized. 

 
 Here is the logic used in the algorithm.  Ideally, the cumulative probability function 

has a range from 0 to 1, but, more generally, it goes from min to max.  If there are to 
be n samplings, then ∆y = (max–min)/n.  Because sampling are wanted with equal 
spacings, but not at the exact ends, they are at (i+0.5)∆y + min.  Also, ideally, the 
argument of the cumulative probability function is x.  If instead, the argument is x/k, 
then the result from the inverse function needs to be multiplied by k (for example, 
the integral of a Gaussian is erf(x/√2) ). 

 
void randshuffletableD(double *a,int n); 
void randshuffletableF(float *a,int n); 
void randshuffletableI(int *a,int n); 
void randshuffletableV(void **a,int n); 
 These shuffle a list of n numbers (or void*s) such that each item is equally likely to 

end up at any position in the list.  These functions used a slightly imperfect 



algorithm up to 4/6/11, when I modified the function to use the exact Fisher-Yates 
algorithm. 

 
void showdist(int n,float low,float high,int bin); 
 This is only intended for debugging other functions, so it is not a general routine.  It 

plots a bar graph (bin bars that range from the first bar center at low to the last bar 
center at high) showing the distribution of n random variables from whatever 
function is hard-coded into it.  This function also displays the actual mean and 
standard deviation. 

 


