
Documentation for opengl2.h and opengl2.c

Steven Andrews, © 2005
See the document “LibDoc” for general information about this and other libraries.

Header file

#ifndef __opengl2_h
#define __opengl2_h

/* If the OpenGL graphics libraries are unavailable, comment out the following
lines (most functions here will become non-active). Also, note that different
names may be required for OpenGL header files, such as <GL/gl.h> */

#include "smoldyn_config.h"

#if defined(OPENGL)

 #if defined(HAVE_GL_GL_H)
 #include <GL/gl.h>
 #elif defined(HAVE_OPENGL_GL_H)
 #include <OpenGl/gl.h>
 #endif

 #if defined(HAVE_GL_GLUT_H)
 #include <GL/glut.h>
 #elif defined(HAVE_GLUT_GLUT_H)
 #include <GLUT/glut.h>
 #endif

 #if defined(HAVE_LIBTIFF)
 #include <tiffio.h>
 #endif

#else
 #define GLfloat float

#endif

void gl2Double2GLfloat(double *input,GLfloat *output,int n);

void gl2Initialize(char *wname,float xlo,float xhi,float ylo,float yhi,float

zlo,float zhi);
void gl2glutInit(int *argc,char **argv);
int gl2State(int state);
float gl2GetNumber(char *variable);
char *gl2GetString(char *option,char *string);
int gl2SetOptionInt(char *option,int value);
float gl2SetOptionFlt(char *option,float value);
char *gl2SetOptionStr(char *option,char *value);
char *gl2SetOptionVoid(char *option,void *value);
void gl2SetKeyPush(unsigned char key);

void gl2SetColor(char c);

float gl2FindRotate(float *vect1,float *vect2,float *axis);
double gl2FindRotateD(double *vect1,double *vect2,double *axis);
void gl2DrawBox(float *pt1,float *pt2,int dim);
void gl2DrawBoxD(double *pt1,double *pt2,int dim);
void gl2DrawGrid(float *pt1,float *pt2,int *n,int dim);
void gl2DrawGridD(double *pt1,double *pt2,int *n,int dim);
void gl2DrawCircle(float *cent,float radius,int slices,char style);
void gl2DrawCircleD(double *cent,double radius,int slices,char style);
void gl2DrawArc(float *cent,float radius,float theta1,float theta2,int

slices,char style);
void gl2DrawArcD(double *cent,double radius,double theta1,double theta2,int

slices,char style);
void gl2DrawHemisphere(float radius,int slices,int stacks,int frontin,int

normals);
void gl2DrawCylinder(float baseRadius,float topRadius,float height,int

slices,int stacks,int frontin,int normals);
void gl2DrawSphere(float radius,int slices,int stacks,int frontin,int normals);
void gl2DrawEcoli(float radius,float length,int slices,int stacks,int

frontin,int normals);
void gl2DrawTextD(double x,double y,double *color,void *font,char *string,int

align);

void gl2PlotData(float *xdata,float *ydata,int nx,int nycol,char *style);
void gl2PlotPts(float **data,int *ser,int nser,int npts,float **color,float

*size,char style);
void gl2PlotPtsD(double **data,int *ser,int nser,int npts,double **color,double

*size,char style);
void gl2PlotSurf(float *xdata,float *ydata,float **zdata,int nx,int ny,int

nz,char *style);

#endif

Requires: <math.h>, <stdio.h>,<gl.h>, <glut.h>,<stdlib.h>,<string.h>,

"opengl2.h","math2.h","random.h"
Example program: smoldyn.c

History: Started 12/02, modified substantially and documented 7/03. Some testing.

Modified KeyPush 9/17/03. Added ability to save TIFF files 3/19/04. Added
panning 3/23/04. Changed 2-D graphics 6/11/04. Made minor changes and
documented 10/20/04. Added gl2SetKeyPush and gl2PlotPts, modified
SpecialKeyPush, and made more minor changes 1/05. 3-D graphics now need to
use glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT). Added gl2GetNumber
2/10/06. Added gl2DrawCircle 2/20/06. Modified gl2DrawCircle and added
gl2DrawArc 12/2/06; also added frontin parameter to several functions. Changed
gl2DrawBox 12/7/06 and added gl2DrawGrid. Added 2-D panning and zooming
2/22/07. Made robust to missing TIFF or OpenGL libraries 9/16/07. Added
gl2SetOptionVoid 12/6/07 and modified program termination method. Added
gl2GetString 1/11/08. Fixed bugs in gl2DrawCircle and gl2DrawArc on 4/21/08,
and added dim to the parameters. Added normals to gl2DrawHemisphere,
gl2DrawSphere, gl2DrawCylinder, and gl2DrawEcoli 12/18/09. Trivial change to
gl2Initialize 3/8/11. Added gl2DrawTextD 4/8/11. Cleaned up #ifdef, etc.

conditional code inclusion on 4/19/11. Edited gl2glutInit 7/8/11. Added
gl2Double2GLfloat 7/11/11.
4/9/12-4/16/12 Edited #ifdef stuff for better compiling. See “Files, linking, and

compiling” below.
 Changed configure file from smoldyn_config.h to smoldynconfigure.h.
 Changed declarations and code for gl2SetOptionStr, gl2SetOptionVoid, and

WriteTIFF for C++ conformity.
 Minor edits in KeyPush and gl2glutInit for C++ conformity.
 Improved gl2Intialize for better window placement.

Introduction

These routines provide easy use of the OpenGL graphics libraries for the situation

in which an object is to be viewed and reoriented by the user. This library was written
specifically for the Smoldyn program although the entire file, except for a few parts of
the header file conditional including, are general purpose.

Files, linking, and compiling

Proper linking and compiling are among the more challenging aspects of

programming. My computer has 7 files all called “gl.h,” of which at least one works
properly and at least one does not work at all. The current sequence of the “if defined...”
statements near the top of the code works well for Macs. Other sequences do not work. I
don’t know how this is for Linux or Windows yet.

#if defined(OPENGL) // Do NOT change the sequence of these if..elses without
contacting Steve
 #if defined(HAVE_OPENGL_GL_H)
 #include <OpenGl/gl.h>
 #elif defined(HAVE_GL_GL_H)
 #include <GL/gl.h>
 #endif

 #if defined(HAVE_OPENGL_GLU_H)
 #include <OpenGl/glu.h>
 #elif defined(HAVE_GL_GLU_H)
 #include <GL/glu.h>
 #endif

 #if defined(HAVE_GLUT_GLUT_H)
 #include <GLUT/glut.h>
 #elif defined(HAVE_GL_GLUT_H)
 #include <GL/glut.h>
 #endif

 #if defined(HAVE_LIBTIFF)
 #include <tiffio.h>
 #endif

 #ifdef WIN32
 #include <windows.h>
 #endif

#else
 #define GLfloat float

#endif

This library is able to save drawings as TIFF files, which requires that a lot of files

get added to a project. The sole access point is the header file tiffio.h, which is in
Applications:tiff-v3.6.1:libtiff. This is declared as a user access path because it is not a
standard system library. Quite a lot of C code is required as well, which I have combined
together into a folder called tifflibrary, in the same folder as tiffio.h. All the TIFF code
files were written by Sam Leffler and can be downloaded from http://www.libtiff.org.
The TIFF code seems to be vastly larger than should be needed for just saving TIFF files,
but it is so interconnected that I was unable to prune it down to a reasonable size. If the
libtiff library is unavailable, just comment out the line “#include "tiff.io"” in the
opengl2.h file and everything should work well, except that images cannot be saved.

See the Smoldyn documentation for additional information on compiling with the
libtiff and OpenGL libraries, especially for other platforms.

Using opengl2

Part of the power and portability of OpenGL is in the glut library, which takes care

of a lot of window and event handling in a hardware-independent fashion. However, to
work properly, it requires a significant re-arrangement of the standard structure of a C
program: rather than high level functions always calling lower level functions, the
OpenGL framework takes care of program control and calls previously registered call-
back functions when certain events occur. Because of this, the standard flow of
information from one function to another is interupted and can only be solved by using
global variables. Many global variables are used within this library for graphics
parameters, which are listed below; their scope is global within the library file, but they
are not available elsewhere. Also, it is suggested that the entire state of the main program
is encapsulated in a single data structure, which is made global to the main program and
to drawing routines.

Use this library by first calling gl2Initialize with the outside edges of the object
to be shown. Then, call glutDisplayFunc with the call-back function that is supposed to
render the scene (often called RenderScene). Then, call glutTimerFunc with the call-back
function that executes the events that are animated (often called TimerFunction). Then,
turn control over to OpenGL by calling glutMainLoop. From here on, OpenGL calls back
to the scene rendering function for redraws and to the timer function for animation and
other program execution. OpenGL also calls back to some internal routines in this library
for window size changes and key presses. When the program terminates, control is
returned from the OpenGL framework, allowing memory to be freed. Here is a typical
program layout:

#include <gl.h>
#include <glut.h>
#include "opengl2.h"
#define REDRAW 100 // iterations between redraws
#define TEXTOUT 10000 // iterations between text output

typedef struct mystatestruct {
 int graphics;
 float x[100];

 float y[100];
 float time;
 float dt; } *stateptr;

stateptr State;

void RenderScene();
void TimerFunction(int er);
stateptr loadstate();
void freestate(stateptr state);
int runtimestep(stateptr state);

stateptr loadstate {
 stateptr state;

 state=(stateptr)malloc(sizeof(mystatestruct));
 if(!state) return NULL;
 state->graphics=1;
 initialize state
 return state; }

void freestate(stateptr state) {
 state->graphics=0;
 free(state);
 return; }

int runtimestep(stateptr state) {
 int er;

 er=0;
 execute one time step, set er to 1 if simulation should terminate
 state->time+=state->dt;
 return er; }

void RenderScene() {
 stateptr state;

 state=State;
 if(state->graphics==0) return;
 if(dimension<3) glClear(GL_COLOR_BUFFER_BIT);
 else glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
 gl2PlotData(state->x,state->y,100,1,"-1g");
 glutSwapBuffers();
 return; }

void TimerFunction(int er) {
 stateptr state;
 static int it=0;

 if(!er&&gl2State(-1)==0) {
 state=State;
 if(!(it%REDRAW)) glutPostRedisplay();
 if(!(it%TEXTOUT)) printf("time = %f\n",state->time);
 er=runtimestep(state);
 it++; }
 else glutPostRedisplay();
 glutTimerFunc(0,TimerFunction,er);
 return; }

int main(void) {
 stateptr state;

 state=loadstate();
 if(!state) return 0;
 State=state;
 gl2Initialize("my Window",-10,10,-10,10,0,0);
 gl2SetOptionVoid("FreeFunc",&freestate);
 gl2SetOptionVoid("FreePointer",(void*)state);
 glClearColor(1,1,1,1);
 glutDisplayFunc(RenderScene);
 glutTimerFunc(0,TimerFunction,0);
 glutMainLoop();
 printf("Press command-q to exit.\n");
 freestate(state);
 return 0; }

Manipulating the picture

Several key events are monitored which can be used to manipulte the picture. The

space bar toggles the mode of the gl2state between 0 and 1, ‘Q’ puts it irreversibly into
state 2, and ‘T’ writes the current screen output to a TIFF file. The intent is that the main
program is in pause mode when that state is 1, continues when it equals 0, and quits in a
normal fashion when it equals 2, although the execution of this functionality is up to the
main program.

Key press dimensions function
space 1,2,3 toggle pause mode between on and off
Q 1,2,3 quit
T 1,2,3 save image as TIFF file
0 1,2,3 reset view to default
arrows 3 rotate object
shift + arrows 1,2,3 pan object
= 1,2,3 zoom in
- 1,2,3 zoom out
x,y,z 3 rotate counterclockwise about object axis
X,Y,Z 3 rotate clockwise about object axis

Saving TIFF files

If TIFF files are enabled, images may be saved by either the user pressing ‘T’ or by

the program using the command gl2SetKeyPush('T'). Using the defaults, the first file
saved is called “OpenGL001.tif”, the second is “OpenGL002.tif”, and so on up to

“OpenGL999.tif”, after which no more files are saved. The reason for not continuing
indefinitely is that it is easy to accidentally save vast numbers of files, which is not
discovered until the hard disk is full. The defaults can be changed using the
gl2SetOptionInt and gl2SetOptionStr functions. Using the former, the starting suffix
number can be changed to any value and the maximum number of TIFFs can also be set
to any number. Using the latter function, the root filename can be changed. To save to a
subdirectory rather than the current one, use standard path notation; for example, on a
Macintosh, the Filename “:Tiffs:mytiff” will save with root name mytiff to folder
Tiffs.

These TIFF stacks can be loaded into QuickTime Pro and saved as a QuickTime
movie.

Assorted OpenGL facts

My reference for OpenGL is the OpenGL Superbible (second edition) by Wright

and Sweet. While they make an effort to make the topic understandable, it is
nevertheless quite confusing. Here are some important OpenGL facts.

Coordinate systems

Window client area. The portion of a window that is available to be drawn in, meaning

everything except for title bar, scroll bars, etc. Measured in x and y pixels.
Viewport. The portion of the window client area that a drawing is mapped to. Measured

in x and y pixels (often equal to the window client area). Specified with glViewport
and gotten with glGetIntegerv(GL_VIEWPORT,…).

Clipping coordinates. A logical coordinate system for a drawing area or volume.
Nothing exists outside this area or volume. Specified with
glMatrixMode(GL_PROJECTION); glLoadIdentity(); and then modified with
glOrtho, gluOrtho2D, gluPerspective.

Externally accessible functions

GLfloat* gl2Double2GLfloat(double *input,GLfloat *output,int n);
 Simply converts the input vector of doubles, of length n, to the output vector of

GLfloats. Returns output. No checks are done at all.

void gl2Initialize(char *wname,float xlo,float xhi,float ylo,float yhi,float

zlo,float zhi);
 This allows a program to set up a generic OpenGL output window with minimal

effort. Arguments are the window name (optional, enter NULL for default) and the
outside dimensions of the object; the clipping volume is created so the object can be
rotated to any angle without poking outside the volume (using the arrow keys;
rotation with other keys can lead to the object escaping). For 1 or two dimensional
rendering, enter values of 0 for the excess dimensions. This function performs the
initial viewing transformation, meaning that drawings that are within the clipping
volume appear in the window. For 2-D graphics note that the option for
"Fix2DAspect" needs to be set before calling gl2Initialize. Added 4/12/12: This
now makes the default window have dimensions 400 by 400 and it is placed in the
middle of the screen.

void gl2glutInit(int *argc,char *argv[]);

 Typically, this just calls glutInit with the same arguments. However, if either argc
or argv are entered as NULL, then this calls glutInit with default arguments. This
function may be called multiple times, but will only call glutInit once.

int gl2State(int state);
 This allows a program to set and access a state variable that indicates whether the

program should be in pause mode or quit mode. Also, the user can control the state
by pressing the space bar – each press toggles the state to or from the pause mode;
‘Q’ sets the state irreversibly in the quit mode. With this routine, an argument that
is equal to 0 or greater sets that state to that value, while a negative argument has no
effect. Either way, the current state is returned. A state of 0 indicates normal
operation, a state of 1 indicates pause mode, and a state of 2 indicates quit mode.

float gl2GetNumber(char *variable);
 This allows a program to access all of the numeric global variables in the opengl2

library. Enter a string with the exact name of the variable, listed below in the
section on “Internal variables and functions,” and the value of that variable will be
returned. If the variable is an integer type, its value is cast to a float. Non-numeric
variables (e.g. strings) are not available with this command.

char *gl2GetString(char *option,char *string);
 This allows access to string variables in the opengl2 library. In option, enter a

string with the name of the variable. The value will be copied over into string,
which needs to be a pre-allocated string of at least size STRCHAR (defined in
string2.h). If option is not a recognized option, “error” is copied into string. In all
cases, string is returned to allow easy function use.

int gl2SetOptionInt(char *option,int value);
 Sets integer options for the opengl2 library. Use a negative number for value to not

change the current value of the option. The current or new value of the option is
returned. If option is “Fix2DAspect”, values of 0 or 1 are allowed, using value. If it
is 0, which is the default, the edges of the window are the ones requested with
gl2Initialize, regardless of window sizing; otherwise, scaling is the same on the x
and y axes to eliminate object distortion. If option is “TiffNumber” it sets the initial
number of the saved TIFF files to the value given; 1 is default. If option is
“TiffNumMax” it sets the maximum number of the saved TIFF files to the value
given; 999 is default. If option is “Dimension” it returns the plot dimension,
although it does not allow the value to be changed.

float gl2SetOptionFlt(char *option,float value);
 Sets float options for the opengl2 library. Use a negative number for value to not

change the current value of the option. The current or new value of the option is
returned. If option is “RotateAngle”, it sets the object rotation angle in degrees; 5 is
the default value.

void gl2SetOptionStr(char *option,char *value);
 Sets string options for the opengl2 library. Currently, the only option available is

“TiffName”, which is entered as a string and can be set to any string using value.
Tiff files are saved using this file name. The name should not include the number
suffix or the “.tif” ending. The default is “OpenGL”, which is used if this function
is not called, or if this function is called with a NULL value.

char *gl2SetOptionVoid(char *option,void *value);

 Sets void* options for the opengl2 library. The options are “FreeFunc” and
“FreePointer”, both of which are NULL as a default. This allows the opengl2 library
to call a freeing function, which needs to be a function of a single pointer, right
before the program terminates. Note that OpenGL keeps on drawing even as the
data structure is being freed, which can cause crashes. The solution is to explicitly
set a flag in the freeing function that the local RenderScene will recognize as an
indication to not draw.

void gl2SetKeyPush(unsigned char key);
 This is a program accessible function that makes the graphics display act exactly as

though a key had been pushed by the user. key should be equal to the character that
the user would select. For the arrows (rotation), key should be ‘u’ for the up-arrow,
‘d’ for down, ‘l’ for left, and ‘r’ for right, and the corresponding uppercase
characters for the shift-arrow commands (panning).

void gl2SetColor(char c);
 Sets the current drawing color using a simple character for input, making this both

crude and convenient. Upper and lower case letters yield the same color. Numbers
and ‘+’ and ‘-’ symbols use the resistor convention.

Color codes

A aqua K,0 black U ultraviolet
B,6 blue L lime V,7 violet
C cyan M magenta W,9 white
D dark red N navy X random
E,8 grey O,3 orange Y,4 yellow
F fuchsia P purple Z random
G green Q quartz 1 brown
H,5 hunter green R,2 red - silver
I indigo S sienna + gold
J olive T teal

float gl2FindRotate(float *vect1,float *vect2,float *axis);
 This finds the rotation axis and angle that carries normalized vector vect1 into

normalized vector vect2. Both of these must be pre-normalized. The angle, in
degrees, is returned, as is the non-normalized rotation axis vector in axis. If vect1
and vect2 are parallel or anti-parallel, the first axis choice is perpendicular to vect1
and the x-axis (which fails if they are parallel) and the second axis choice is
perpendicular to vect1 and the y-axis.

void gl2DrawBox(float *pt1,float *pt2,int dim);
void gl2DrawBoxD(double *pt1,double *pt2,int dim);
 This draws an axis-aligned wire frame box with low point pt1 and high point pt2,

both of which must be 3-dimensional vectors for all dim values. dim is the box
dimensionality. This function does not worry about winding directions. These
boxes are drawn with GL_LINES, GL_LINE_LOOP, and GL_LINE_STRIP, so the OpenGL
line modifying commands are the ones to use to control how these boxes look.

gl2DrawSolidBox...??

void gl2DrawGrid(float *pt1,float *pt2,int *n,int dim);
 This draws an axis-aligned wire frame grid with low point pt1 and high point pt2,

both of which must be 3-dimensional vectors for all dim values. dim is the grid
dimensionality. The grid has n[d] partitions on the d’th dimension, where n is a
dim-dimensional vector and each n[d] value must be at least 1. The grid is drawn
with GL_POINTS (1-D) or GL_LINES so the OpenGL line modifying commands are the
ones to use to control how it looks.

void gl2DrawCircle(float *cent,float radius,int slices,char style,int dim);
 This draws a flat circle centered at cent, with radius radius. The edge is not curved

but a series of slices straight lines. The circle is in the x,y-plane. The style is
entered as ‘f’ or ‘g’ for a filled circle, ‘e’ for the circle edge, or ‘v’ to just show the
vertices along the edge. dim is the dimensionality, which must be either 2 or 3.

void gl2DrawArc(float *cent,float radius,float theta1,float theta2,int

slices,char style,int dim);
 This is identical to gl2DrawCircle, but only draws the arc from theta1 to theta2.

The slices is the slices for the whole circle, which is rounded down as needed to
make the arc an integer number of slices.

void gl2DrawHemisphere(float radius,int slices,int stacks,int frontin,int

normals);
 This draws a hemisphere in the positive z space, with its equator, which is its edge,

on the x,y-plane. The pole is on the positive z-axis. Its radius is radius, it is
subdivided into slices segments around the z-axis (longitude lines), and stacks
segments along the z-axis (latitude lines). The hemisphere is drawn with
GL_QUAD_STRIP and GL_TRIANGLE_FAN, so its appearance can be altered with OpenGL
polygon commands (e.g. glPolygonMode and glMaterial). If frontin is 1, the front
face is on the inside, and 0 means that it’s on the outside. OpenGL is told what the
normal vectors are if normals is 1 and not if normals is 0.

void gl2DrawCylinder(float baseRadius,float topRadius,float height,int

slices,int stacks,int frontin,int normals);
 This draws a cylinder, frustum, or cone. It is nearly identical to the OpenGL

quadrics cylinder, but easier to use. The cylinder is concentric with the z-axis with
its base on the x,y-plane. The base has radius baseRadius, the top has radius
topRadius, the cylinder height is height, and it is divided into slices segments
around the z-axis and stacks segments along the z-axis. The cylinder is drawn with
GL_QUAD_STRIP, so its appearance can be altered with OpenGL polygon commands.
As elsewhere, frontin should be set to 1 for the front on the inside and 0 for the
front on the outside.

void gl2DrawSphere(float radius,int slices,int stacks,int frontin,int normals);
 This draws a sphere. It is nearly identical to the OpenGL glutWireSphere and

glutSolidSphere but is slightly easier to use. The sphere is centered at the origin
and has radius radius. It is divided into slices segments around the z-axis and
stacks segments along the z-axis. It is drawn with GL_QUAD_STRIP and
GL_TRIANGLE_FAN so its appearance can be altered with OpenGL polygon
commands. If frontin is 1,the front face is on the inside, and 0 means that it’s on
the outside.

void gl2DrawEcoli(float radius,float length,int slices,int stacks,int
frontin,int normals);

 This draws an E. coli shape, which is a cylinder capped at both ends by a
hemisphere. Its axis is parallel to the z-axis and its mid-plane is the x,y-plane. It
has radius radius, total length (including both endcaps) length, and it has slices
segments around the z-axis and stacks total segments along the z-axis. The shape is
drawn with GL_QUAD_STRIP and GL_TRIANGLE_FAN, so its appearance can be altered
with OpenGL polygon commands.

void gl2DrawTextD(double x,double y,double *color,void *font,char *string,int

align);
 Writes text to the graphics window in a fixed location. The drawing location is at x

and y, which are scaled between 0 and 100, so (0,0) is the lower left corner and
(100,100) is the upper right corner. color is the RGB vector drawing color, font is
the font (e.g. GLUT_BITMAP_8_BY_13 and GLUT_BITMAP_HELVETICA_10), and string is
the text to be displayed. Set align to -1 for left alignment, 0 for center alignment,
or 1 for right alignment.

void gl2PlotData(float *xdata,float *ydata,int nx,int nycol,char *style);
 This is a convenient way to plot simple x,y data. xdata should be a one-column

wide array of x-values of size nx. ydata gives the y-values for multiple data series,
of size nx rows by nycol columns. The style string is passed in with three
characters per data series. The first character is ‘ ’ to indicate that the series should
not be plotted, ‘-’ for lines, ‘.’ for dots, or ‘h’ for a histogram (which isn’t written
correctly yet). The second character is a number to give the boldness of the line or
symbol, from 0 to 9. The third character is the color of the data series, using the
codes shown above for gl2SetColor. Note that there is no check on the length or
correctness of the style string.

void gl2PlotPts(float **data,int *ser,int nser,int npts,float **color,float

*size,char style);
 This is similar to gl2PlotData, but is for a 3-D scatter plot. Here, data is indexed as

data[row][dimension], where row is the point number and dimension is an index
that varies from 0 to 2 for the x, y, and z components of the point. ser is indexed as
ser[row] and gives the series number (0 to nser-1) for each data point, nser is the
number of data series, and npts is the total number of data points. color is indexed
as color[series][RGB] and should be between 0 and 1 for each RGB value and
size[series] is a float for the point size. style is ‘ ’ for plot nothing, ‘.’ for plot
dots, ‘-’ for plot lines, and ‘s’ for plot spheres.

void gl2PlotSurf(float *xdata,float *ydata,float **zdata,int nx,int ny,int

nz,char *style);
 This plots data in three dimensions. xdata and ydata are the lists of x and y values,

which are the independent coordinates, and have sizes nx and ny. zdata is the
dependent variable. The first array of zdata is the x,y coordinate and the second
array is the series number, so an x,y,z coordinate is

 x=xdata[ix];
 y=ydata[iy];
 z=zdata[iy*nx+ix][iz]

 Here, ix is the index on x, iy is the index on y, and iz is the series number. The

first letter of the style string tells what the plot type is, where the only letter
currently defined is ‘s’ for shading. Using this option, only the first 64 sets of z-
data are plotted; all the rest are ignored. Subsequent letters are the color codes for
the respective data series. Colors for multiple series are added together. Note that
there is no check on the length or correctness of style. Boxes around points extend
to the centers between points. For example, suppose xdata={0,1,2,4}; then, box
intervals on x are (–0.5,0.5), (0.5,1.5), (1.5,3), and (3,5).

Internal variables and functions

#define Fix2DAspectDefault 0
#define TiffNameDefault "OpenGL"
#define TiffNumberDefault 1
#define TiffNumMaxDefault 999
#define RotateAngleDefault 5.0

void ChangeSize(int w,int h);
void KeyPush(unsigned char key,int x,int y);
void SpecialKeyPush2(unsigned char key,int x,int y);
void SpecialKeyPush(int key,int x,int y);
int WriteTIFF(char *filename,char *description,int x,int y,int width,int

height,int compression);

#ifndef __gl_h_
typedef float GLfloat;
typedef unsigned char GLubyte;
#endif

GLfloat ClipSize,ClipMidx,ClipMidy,ClipMidz;
GLfloat ClipLeft,ClipRight,ClipBot,ClipTop,ClipBack,ClipFront;
GLfloat FieldOfView,Near,Aspect,Zoom;
GLfloat PixWide,PixHigh;
int Gl2PauseState,Dimension;
GLfloat Xtrans,Ytrans;
int Fix2DAspect=Fix2DAspectDefault;
char TiffName[STRCHAR]=TiffNameDefault;
int TiffNumber=TiffNumberDefault;
int TiffNumMax=TiffNumMaxDefault;
GLfloat RotateAngle=RotateAngleDefault;
void (*FreeFunc)(void*)=NULL;
void *FreePointer=NULL;

Variables

ClipSize length of edge of clipping cube, sized so object can spin.
ClipMidx middle of object on x axis.
ClipMidy middle of object on y axis.

ClipMidz middle of object on z axis.
ClipLeft left edge of clipping cube.
ClipRight right edge of clipping cube.
ClipBot bottom edge of clipping cube.
ClipTop top edge of clipping cube.
ClipBack back edge of clipping cube (z more negative; away from viewer).
ClipFront front edge of clipping cube (z less negative; close to viewer).
FieldOfView field of view on y direction for 3 dimensional, in degrees.
Near distance from viewer to front side of clipping cube.
Aspect aspect ratio of window.
PixWide width of window in pixels.
PixHigh height of window in pixels.
Gl2PauseState pause state, with 0 for continue, 1 for pause, 2 for quit.
Dimension dimensionality of object, from 1 to 3.
Xtrans translation on x-axis.
Ytrans translation on y-axis.
Fix2DAspect option that fixes aspect ratio in 2D to uniform if set
Fix2DAspectDefault integer constant default for Fix2DAspect, set to 0
TiffName option for the name of a saved TIFF picture
TiffNameDefault string constant default for TiffName, set to “OpenGL”
TiffNumber option for the suffix number of the first saved TIFF
TiffNumberDefault integer constant default for TiffNumber, set to 001
TiffNumMax option for the maximum suffix number of saved TIFFs
TiffNumMaxDefault integer constant default for TiffNumMax, set to 999
RotateAngle option for rotation angle with key manipulations
RotateAngleDefault integer constant default for RotateAngle, set to 5 degrees

Functions

void ChangeSize(int w,int h);
 ChangeSize is a call-back function. It is called when the user changes the window

size or shape, as well as upon initiallization. The function takes in the current
window width and height in pixels, in w and h, respectively. Using those, it sets the
clipping volume in such a way that changing the window shape does not distort the
image.

KeyPush is a call-back function which is called when a key is pressed (but not arrows,

etc.) It is set up to rotate the object about the object axes, based on user key pushes,
as well as to zoom in and out and reset to a default view.

SpecialKeyPush2 rotates the object about the viewing axes and translates it, based on the

following key values: ‘u’, ‘d’, ‘l’ and ‘r’ rotate up, down, left, and right and ‘U’, ‘D’,
‘L’, and ‘R’ translate the object up, down, left, and right. The rotation angle is
RotateAngle.

SpecialKeyPush is a call-back function which is called when a special key is pressed
(arrows, etc.) It converts the key presses to letter symbols and rotates or translates
the object by calling SpecialKeyPush2.

WriteTIFF
 This saves the current contents of the OpenGL window to disk as a TIFF file. It is

saved to the same folder as the application and is called “OpenGL###.tif”, where
the ### starts at 001 and is incremented. This function was copied nearly verbatim
from the short demonstration program called writetiff.c that was written by Mark
Kilgard and copyrighted in 1997. It returns 1 if it fails, 0 if it succeeds, or 2 if the
libtiff library is not available. Usually enter -1 for compression, which gets
replaced with the libtiff value for COMPRESSION_PACKBITS.

Bugs and desired improvements
gl2Initialize doesn’t seem to work with ymax<0.000005.
gl2SetOption should have a lot more options that can be set. For example, it should be

possible to modify the viewing boundaries, or allow the calling program to rotate
the object or pan around, rather than just having the user do that with keystrokes.

gl2PlotData needs work to get the histogram part functioning. Also, there should be a
check on the style string.

gl2PlotSurf should be able to plot surfaces in 3D or in other ways. There should be a
check on the style string.

Should change tiff filename suffix numbers to have the proper number of digits, using
TiffNumNax.

