
Documentation for minimize.h and minimize.c

Steven Andrews, © 2007-2016
See the document “LibDoc” for general information about this and other libraries.

Overview

The minimize library is a collection of routines for finding the minimum value of a

function. The library is typically used by first calling mnmz_alloc to create a data
structure for the minimization process, then registering the parameters that are to be
optimized with mnmz_setparam. Then, call one of the minimization functions, each of
which takes only one step, until a suitable result has been achieved. At the end, free the
data structure. None of the search functions are particularly good, and some may contain
bugs.

Header file

#ifndef __minimize_h
#define __minimize_h

typedef struct minimizestruct {
 int maxparam; // maximum number of parameters
 int nparam; // actual number of parameters
 double **param; // pointers to parameter variables
 double *priorparam; // values of parameters prior to fitting
 double *scale; // characteristic scale for each parameter
 double *lo; // minimum value for each parameter
 double *hi; // maximum value for each parameter
 int *fix; // 1 if parameter is fixed, 0 if not
 void *systemptr; // pointer to system, which is passed to minfn
 double (*minfn)(void *,double); // function that is to be minimized
 double distance; // the most recently achieved best distance
 double f1,f2,f3; // floats for minimization functions
 double *v1,*v2,*v3; // vectors for minimization functions
 double *m1; // matrix for minimization function
 } *minimizeptr;

minimizeptr mnmz_alloc(int maxparam,void* systemptr,double
(*minfn)(void*,double));
void mnmz_free(minimizeptr mnmz);
void mnmz_clear(minimizeptr mnmz);
int mnmz_setparamptr(minimizeptr mnmz,char *param,void *value);
int mnmz_setparam(minimizeptr mnmz,double *paramptr,double scale,double
lo,double hi,int fix);
int mnmz_step1(minimizeptr mnmz,int rptstep);
int mnmz_step2(minimizeptr mnmz,int rptstep);
int mnmz_step3(minimizeptr mnmz,int rptstep);
int mnmz_annealstep(minimizeptr mnmz,int rptstep);
void mnmz_randstep(minimizeptr mnmz,double change);
int mnmz_simplex(minimizeptr mnmz,int rptstep);

endif

History: Written 3/07-4/07 as part of MSI work. Refurbished 10/08. Added

mnmz_setparamptr 4/9/09.

Data structure

This structure contains information about the function to be minimized, the
parameters of that function, and some minimization routine variables. The function
called minfn is the function to be minimized. Its return value is called distance, although
that may not be the best name for it. The items that are sent to the minfn function are the
systemptr, which is completely untouched by minimization routines, and the old
distance. If the current distance is greater than the old distance, the minfn is supposed to
stop calculating and just return whatever was found because it will be ignored anyhow.
This method is used to allow efficient program execution.

In the structure, param, priorparam, scale, lo, hi, and fix each have maxparam
elements. The vectors v1, v2, and v3 each have maxparam+1 elements and m1 has size
(maxparam+1)2 elements. The scalars f1, f2, and f3, the vectors v1, v2, and v3, and matrix
m1 are for the exclusive use of the minimization function.

The value of scale is roughly the expected deviation for a parameter. In other
words, before minimization, each parameter value should be set to the best guess, and
scale should give a sense of the expected search range for that particular parameter. The
actual search range may end up being much larger or much smaller.

Structure handling functions

minimizeptr mnmz_alloc(int maxparam,void* systemptr,double

(*minfn)(void*,double));
 Allocates a minimize structure for a total size of maxparam, allocates all internal

arrays, and sets all values to defaults. The systemptr and minfn pointer inputs are
simply copied into the data structure. Returns NULL if space could not be allocated.
Default values:

 maxparam maxparam
 nparam 0
 param[i] NULL
 priorparam[i] 0
 scale[i] 1
 lo[i] DBL_MIN
 hi[i] DBL_MAX
 fix[i] 1
 distance DBL_MAX
 f1, f2, f3 0
 v1[i], v2[i], v3[i] 0
 m1[i*(maxparam+1)+j] 0

void mnmz_free(minimizeptr mnmz);
 Frees a minimize structure. This does not free the pointers in the param list, nor the

systemptr, because those are not owned by the minimize structure.

void mnmz_clear(minimizeptr mnmz);
 Clears a minimize structure, but does not free it. maxparam, systemptr, and minfn

are untouched. All other elements are set to the defaults that are listed above in the
mnmz_alloc discussion.

int mnmz_setparamptr(minimizeptr mnmz,char *param,void *value);
 Sets one of the pointers in the minimize structure. This sets the systemptr element

to value if param is “systemptr” and the minfn element to value if param is “minfn”.
This returns 0 if param is one of these and 1 if param is anything else.

int mnmz_setparam(minimizeptr mnmz,double *paramptr,double scale,double

lo,double hi,int fix);
 Either adds a new parameter to a minimize structure, or changes the minimization

values for a parameter that is already in existance. Note that this does not change
the value of the parameter. Send in paramptr pointing to the parameter, scale as the
scaling value for the minimizing function, lo and hi as the fitting domain limits,
and fix as the fixing value. Returns 1 for successful operation and 0 if there is no
space in the structure to add this new parameter.

Minimzation functions

Several functions are given here. The mnmz_step1 one is the least sophisticated, but is the
one that I use most. I’m not sure if the others are intrinsically worse or if I haven’t
figured out the best parameterization for them yet.

int mnmz_step1(minimizeptr mnmz,int rptstep);
 Does one step of a random search to minimize the function. Send in rptstep with 0

for the first step, which initializes the range and distance, and non-zero for
subsequent steps. Returns 1 if the trial solution was an improvement, in which case
the new parameters are stored, and 0 if the trial solution was worse, in which case
the parameters are unchanged. If this function is run for several thousand
successes, one generally gets reasonably close to the overall minimum. This
function should work reasonably well, but is extremely crude and inefficient.

 This works with a greedy random walk method. For a step, each free parameter is

changed using an approximately Gaussian density with mean of the current value
and standard deviation of range*scale[i], where i is the parameter number; these
trial values are reflected into the range between lo and hi as needed. If the new
result is an improvement, then the parameters are kept and the range is increased by
10%; if it is worse, the parameters are reset and the range is decreased by 0.1%.

Note that there is a single range value for all parameters, meaning that the search
region is always proportional to scale[i] for each parameter.

int mnmz_step2(minimizeptr mnmz,int rptstep);
 This is essentially identical to mnmz_step1, but uses a slightly different algorithm.

This varies only a single randomly chosen parameter each time it is called, and it
varies it by an amount that is proportional to sigma[i], where sigma[i] is set to
scale[i] at the first call and then increases by 20% for each improvement and
decreases by 1% for each failure.

int mnmz_step3(minimizeptr mnmz,int rptstep);
 This is essentially identical to mnmz_step1. If the trial solution is worse, then it

returns, just as before. However, if the trial solution is an improvement, then it
searches the vector in parameter space that points in the direction of the step to see
what step length optimizes the result. This optimization again uses a greedy
random walk method. This looks good, but I didn’t proofread it carefully.

int mnmz_annealstep(minimizeptr mnmz,int rptstep);
 This is essentially identical to mnmz_step1. It differs in that moves that increase

distance are permitted with probability exp(-∆distance/kt), where kt is a thermal
energy. The value of kt is initialized to the initial distance value and decreases by
1% at each function call.

void mnmz_randstep(minimizeptr mnmz,double change);
 Does one random step on the non-fixed parameters, with rms step length equal to

change times the scale value for the respective parameter. The lo and hi bounds
are still observed. This function does not consider any distance function at all, but
only moves the parameters randomly. This can be useful for restarting the
minimization procedure from a new starting point.

int mnmz_simplex(minimizeptr mnmz,int rptstep);
 This uses a simplex procedure for minimization. I think that it’s copied nearly

verbatim from Numerical Recipies in C, but I have not checked it at all.

Internal Function

double smplxmove(minimizeptr mnmz,int ihi,double fac);
 This is part of the simplex optimation function.

