
Documentation for dynsys2.h and dynsys2.c

Steven Andrews, © 2008-2016

Header:

#ifndef __dynsys2_h__
#define __dynsys2_h__

typedef struct odestruct {
 int maxdim; // allocated system dimensionality
 int dim; // actual system dimensionality
 int order; // order of ODE integration (1=Euler)
 double *dtptr; // pointer to dt
 double dtsugg; // suggested time step for order 5
 double dtmax; // maximum dt for order 5 integration
 double eps; // maximum error for order 5 integration
 void *systemptr; // pointer to system
 int (*eqm)(void *); // function for equations of motion
 double **statenow; // state at end of time step
 double **statewas; // state at beginning of time step
 double **deriv; // time derivative
 double *scale; // scales errors for order 5 integration
 double *k1,*k2,*k3,*k4; // scratch space for integrators
 } *odeptr;

odeptr dyns_AllocOde(int maxdim);
void dyns_FreeOde(odeptr ode);
int dyns_SetOrder(odeptr ode,int order);
int dyns_SetParamPtr(odeptr ode,char *param,void *value);
int dyns_SetParamDbl(odeptr ode,char *param,double value);
int dyns_AddStatePtr(odeptr ode,double *nowptr,double *wasptr,double scale);
void dyns_ClearStatePtrs(odeptr ode);
int dyns_StepOde(odeptr ode);

// Example program
int dyns_ShoExample(void);

#endif

History: First parts written 1/29/97. Field routines added 6/97; some testing. Slight
additions 1/00. Reformatted documentation and added a new independent section 6/04,
called ‘2004 version’. Fixed order 5 in 2004 version 9/1/04. Renamed to dynsys2
10/24/08, cut all pre-2004 stuff, and completely overhauled. Added
dyns_ClearStatePtrs 4/9/09. Added deriv element to the data structure 4/4/14 and
modified routines to account for it.

Data structure

odestruct, pointed to by a odeptr, is a structure that contains all the useful
information about an ODE, including scratch space for the integrator. maxdim is the
allocated system dimensionality (maximum number of differential equations). dim is the

actual system dimensionality. order is the order of the Runge-Kutta integrator, which is
1 for Euler integration, 2 for the mid-point method, 4 for 4th order Runge-Kutta, or 5 for
5th order Runge-Kutta with adaptive step-sizing. dtptr is a pointer to the variable that
contains the time step. For order 5, dtptr is used to make dt equal to the actual size step
that was taken, dtsugg is the suggested size of the next step, dtmax is the maximum time
step allowed, and eps is the absolute maximum error allowed in any state variable. Of
these, only dtptr is used for orders 1, 2, or 4. systemptr is a pointer to a structure that
contains everything that is known about the system, cast as a void*; it is never used in
any of the routines here, but it is passed on to the relevant function with the equations of
motion. eqm is the function for the equations of motion, where its only parameter is the
system, pointed to by systemptr. statenow and statewas are maxdim long lists of pointers,
where each pointer points to one of the time dependent variables. scale is a list of values
that are used to scale the calculated errors for step size control, used for order 5
integration. k1 to k4 are dim size vectors for scratch space and are only allocated as
needed.

When the integrator is done with one time step, the variables pointed to by statenow
contain the state of the system at the end of the time step, while those pointed to by
statewas contain the state of the system at the beginning of the time step. While the
integrator is busy, statewas points to the current system values and deriv is supposed to
be returned to the integrator from the equations of motion function with the time
derivative for each variable (it was statewas up to 4/4/14). This is made clearer below.

Using the routines

The routines are demonstrated in the example function called dyns_ShoExample,

which can be called from externally. It simulates a simple harmonic oscillator with
damping.

The scale vector can be useful for improving the quality of step sizing for order 5
integration. As a default, all scale values are equal to 1.0 to maintain an unscaled
absolute error. Alternatively, values could be set to “typical” values for that state
variable to still maintain absolute errors, but now without focusing on the smallest valued
state variables. Also, scale could be reset at each time step to equal the absolute value of
the state variable to maintain a constant relative error, but one needs to make sure that it
is never zero.

Equations of motion

The integrator needs to have access to a function that contains the equations of

motion. This function is given the system, cast as a void*, and needs to calculate the time
derivatives of each state variable. Using the “was” and “now” notation that is used in this
library, the equations of motion need to use the “was” state information to calculate time
derivatives, which it stores in the “deriv” variables. This function should return 0 for
correct operation and 1 for failure. Failure will cause integrator termination.

Functions

odeptr dyns_AllocOde(int maxdim);
 Allocates an odestruct and returns an odeptr that points to it, assuming allocation

was successful, or NULL if not. maxdim is the maximum number of differential
equations (number of time dependent variables).

void dyns_FreeOde(odeptr ode);
 Frees an odestruct, including all memory that it owns. It does not free memory

that was allocated elsewhere.

int dyns_SetOrder(odeptr ode,int order);
 Sets the integration order of an odestruct. This function can be called as often as

wanted, and in any sequence. Allowable order values are 1, 2, 4, or 5. Returns 0
for success, 2 for illegal inputs, or 1 for inability to allocate memory.

int dyns_SetParamPtr(odeptr ode,char *param,void *value);
 Sets pointer parameters of an odestruct, several of which must be set before the

odestruct is used. The param string can be “dtptr”, “systemptr”, or “eqm”; in each
case, the value should be the appropriate pointer, cast as a void* if necessary.
Returns 0 for success or 2 for illegal inputs.

int dyns_SetParamDbl(odeptr ode,char *param,double value);
 Sets floating point parameters of an odestruct. The param string can be “dtsugg”,

“dtmax”, or “eps”; in each case, the value should be the appropriate number.
Returns 0 for success or 2 for illegal inputs (including zero or negative values).
This function only needs to be used for order 5 integration.

int dyns_AddStatePtr(odeptr ode,double *nowptr,double *wasptr,double

*derivptr,double scale);
 Adds a state variable to the odestruct. Send in nowptr pointing to the variable that

will contain the current state value, wasptr pointing to the variable that will contain
the prior state value, and derivptr pointing to the variable that will contain the
derivative information. derivptr may be the same as nowptr. scale is a value for
the characteristic size scale of this variable; if it is sent in less than or equal to 0, the
default value of 1 will be used.

void dyns_ClearStatePtrs(odeptr ode);
 Clears all state variables from the ode but does not free any memory or change the

maxdim element. After this is complete, the dim element equals zero.

int dyns_StepOde(odeptr ode);
 Performs the integration of an odestruct over one time step. It uses Euler, Mid-

point, fixed step Runge-Kutta, or adaptive step Runge-Kutta, depending on the
order element. On input, statenow pointers point to the current state of the system
and statewas pointers are ignored (i.e. there is no need to prepare the statewas
values). On output, statewas pointers point to the past state of the system and
statenow pointers point to the new state. Note that the derivative information is not
set to zero before the equations of motion function is called. The eqm function for
the equations of motion is supposed to return 0 for correct operation and any other
value for failure; on failure, returns the same error code and otherwise returns 0.

int dyns_ShoExample(void);

 Example of the use of the functions in this library. This can be called and will just
plain run. See below.

Example program

To show how to use these functions, and to test them, a simple harmonic oscillator
example is included. Because the entire system needs to be encapsulated in a data
structure, a data structure is used here, which is called shostate. It is:

typedef struct shostate {
 double positionwas;
 double positionnow;
 double velocitywas;
 double velocitynow;
 double omega2;
 double gamma;
 double time;
 double dt;
 } *shostateptr;

The equations of motion are

x = v
v = −ω 2x − 2γ v

x is the position, v is the velocity, ω is the frequency, and γ is a damping term. These are
implemented in the equations of motion function called ShoEqm. The exact theoretical
results are:

 x = Ae−γ t cos ′ω t −φ()
 v = Ae−γ t − ′ω sin ′ω t −φ() − γ cos ′ω t −φ()⎡⎣ ⎤⎦

 where ′ω = ω 2 − γ 2

Using order 1 integration, results are way off, with an amplitude that does not decrease
nearly fast enough. Results are better with order 2 and excellent with orders 4 or 5. With
order 5, it is important to limit the time step to the natural time constant of the system,
which is ω–1. Because absolute errors are kept below a threshold, the relative errors
become large when absolute values are small, unless a maximum time step is enforced.

