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Header file 
 
#ifndef __Sphere_h 
#define __Sphere_h 
 
/* 
Cart = Cartesian coordinates (x, y, z) 
Sc = Spherical coordinates (r, theta, phi) 
Dcm = Direction cosine matrix (A00, A01, A02, A10, A11, A12, A20, A21, A22) 
Eax = Euler angles x-convention (theta, phi, psi) 
Eay = Euler angles y-convention (theta, phi, chi) 
Ep = Euler parameters (e0, e1, e2, e3) 
Xyz = xyz- or ypr- or Tait-Bryan convention (yaw, pitch, roll): rotate on z, 
then y, then x 
*/ 
 
void Sph_Cart2Sc(double *Cart,double *Sc); 
void Sph_Sc2Cart(double *Sc,double *Cart); 
void Sph_Eay2Ep(double *Eay,double *Ep); 
void Sph_Xyz2Xyz(double *Xyz1,double *Xyz2); 
 
void Sph_Eax2Dcm(double *Eax,double *Dcm); 
void Sph_Eay2Dcm(double *Eay,double *Dcm); 
void Sph_Xyz2Dcm(double *Xyz,double *Dcm); 
void Sph_Xyz2Dcmt(double *Xyz,double *Dcmt); 
void Sph_Dcm2Xyz(double *Dcm,double *Xyz); 
void Sph_Dcm2Dcm(double *Dcm1,double *Dcm2); 
void Sph_Dcm2Dcmt(double *Dcm1,double *Dcm2); 
 
void Sph_DcmxDcm(double *Dcm1,double *Dcm2,double *Dcm3); 
void Sph_DcmxDcmt(double *Dcm1,double *Dcmt,double *Dcm3); 
void Sph_DcmtxDcm(double *Dcmt,double *Dcm2,double *Dcm3); 
 
void Sph_One2Dcm(double *Dcm); 
void Sph_Xyz2Xyzr(double *Xyz,double *Xyzr); 
void Sph_Dcm2Dcmr(double *Dcm,double *Dcmr); 
void Sph_Rot2Dcm(char axis,double angle,double *Dcm); 
void Sph_Newz2Dcm(double *Newz,double psi,double *Dcm); 
 
void Sph_DcmtxUnit(double *Dcmt,char unit,double *vect,double *add,double 
mult); 
 
double Sph_RotateVectWithNormals3D(double *pt1,double *pt2,double 
*newpt2,double *oldnorm,double *newnorm); 
 
#endif 
 
Includes: <stdio.h>, "random.h", "Sphere.h" 



 
History: Written 2/05.  Documented 7/05.  Added Eax2Dcm, Eay2Dcm, Newz2Dcm on 

10/24/07.  Added Sph_DcmtxUnit 5/55/12.  Added Sph_Xyz2Dcmt 5/28/12.  Added 
Sph_RotateVectWithNormals 8/6/15. 

 
Description 

 
This is a collection of routines for manipulating rotational coordinates using a 

variety of conventions.  Note that some coordinates are for vectors (e.g. spherical 
coordinates) whereas others are for transformations (e.g. Euler angles).  Most of the math 
here is described in Goldstein. 

If two different function arguments are the same size, such as two vectors or two 
matrices, then they are always allowed to point to the same memory.  For example to 
invert the direction cosine matrix dcm in-place, the function call is 
Sph_Dcm2Dcmt(dcm,dcm).  While input angles are never required to be clamped to fixed 
domains, the output angle ranges are always clamped, as listed below.  Input direction 
cosine matrices are assumed to be valid and are not checked.  The following descriptions 
of the conventions uses A as a direction cosine matrix and the matrix definitions: 
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X a( ) =
1 0 0
0 cosa sina
0 −sina cosa
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Y a( ) =
cosa 0 −sina
0 1 0
sina 0 cosa
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Z a( ) =
cosa sina 0
−sina cosa 0
0 0 1
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⎥ 
 

 
Cartesian coordinates (Cart) 
 Vector is [x,y,z], all of which are on (–∞,∞). 
 
Spherical coordinates (Sc) 
 Vector is [r,θ,φ].  r is on [0,∞), θ is on [0,π], and φ is on [0,2π). 
 
Direction cosine matrix (Dcm) 
 Matrix is given as a 9 element array, which lists the matrix row by row.  This is 

useful for all coordinate transformations and is not associated with any particular 
convention. 

 
Direction cosine matrix transpose (Dcmt) 
 This is entered as a normal, non-transposed, direction cosine matrix.  However, it is 

interpreted as a transposed direction cosine matrix in the code. 
 
Euler angle x-convention (Eax) 
 Vector is [θ,φ,ψ].  θ is on [0,π], φ is on [0,2π), ψ is on [0,2π).  A = Z(ψ)X(θ)Z(φ). 
 
Euler angle y-convention (Eay) 
 Vector is [θ,φ,χ].  θ is on [0,π], φ is on [0,2π), χ is on [0,2π).  A = Z(χ)Y(θ)Z(φ). 
 
Euler parameters (Eap) 



 Vector is [e0,e1,e2,e3]. 
 
Yaw-pitch-roll (Xyz) 
 Vector is [φ,θ,ψ].  All are on [–π,π).  A = X(ψ)Y(θ)Z(φ). 
 

 
Code documentation 

 
 
Typical parameter names 
 
cf cos(φ) 
cq cos(θ) 
cy cos(ψ) or cos(χ) 
sf sin(φ) 
sq sin(θ) 
sy sin(ψ) or sin(χ) 
 
 
Internal macros and global variables 
 
#define PI 3.14159265358979323846 
 π. 
 
double Work[9],Work2[9]; 
 Scratch-space. 
 
 
Externally accessible functions 
 
void Sph_Cart2Sc(double *Cart,double *Sc); 
 Converts Cartesian coordinates to spherical coordinates. 
 
void Sph_Sc2Cart(double *Sc,double *Cart); 
 Converts spherical coordinates to Cartesian coordinates. 
 
void Sph_Eay2Ep(double *Eay,double *Ep); 
 Converts Euler angle y-convention transformation to Euler parameters.  Equations 

from Goldstein p. 608. 
 
void Sph_Xyz2Xyz(double *Xyz1,double *Xyz2); 
 Copies yaw-pitch-roll vector Xyz1 to Xyz2, and clamps angles in the process. 
 
void Sph_Eax2Dcm(double *Eax,double *Dcm); 
 Calculates direction cosine matrix from Eular angle x-convention vector.  Equations 

from Wolfram MathWorld. 
 



void Sph_Eay2Dcm(double *Eay,double *Dcm); 
 Calculates direction cosine matrix from Eular angle y-convention vector.  Equations 

from Wolfram MathWorld. 
 
void Sph_Xyz2Dcm(double *Xyz,double *Dcm); 
 Calculates direction cosine matrix from yaw-pitch-roll vector.  Equations from 

Goldstein p. 609.  A = X(ψ)Y(θ)Z(φ). 
 
void Sph_Xyz2Dcmt(double *Xyz,double *Dcmt); 
 Calculates transposed direction cosine matrix from yaw-pitch-roll vector.  This is 

just Sph_Xyz2Dcm, but for a transposed result. 
 
void Sph_Dcm2Xyz(double *Dcm,double *Xyz); 
 Calculates yaw-pitch-roll vector from a direction cosine matrix.  Equations are 

derived from Goldstein p. 609. 
 
void Sph_Dcm2Dcm(double *Dcm1,double *Dcm2); 
 Copies direction cosine matrix Dcm1 to a new one in Dcm2. 
 
void Sph_Dcm2Dcmt(double *Dcm1,double *Dcm2); 
 Transposes direction cosine matrix Dcm1 to yield matrix inverse in Dcm2.  A2 = A1

–1. 
 
void Sph_DcmxDcm(double *Dcm1,double *Dcm2,double *Dcm3); 
 Matrix multiplies Dcm1 by Dcm2 and returns result in Dcm3.  Note that the 

transformation is Dcm2 first, then Dcm1, which occurs in the new coordinate system.  
A3 = A1A2. 

 
void Sph_DcmxDcmt(double *Dcm1,double *Dcmt,double *Dcm3); 
 Matrix multiplies Dcm1 by the transpose of Dcmt and returns result in Dcm3 (Dcmt is 

entered as an untransposed matrix).  Essentially, this is a negative rotation of Dcmt 
followed by a positive rotation of Dcm1.  A3 = A1A2

–1. 
 
void Sph_DcmtxDcm(double *Dcmt,double *Dcm2,double *Dcm3); 
 Matrix multiplies the transpose of Dcmt by Dcm2 and returns the result in Dcm3 (Dcmt 

is entered as an untransposed matrix).  Essentially, this is a positive rotation of Dcm2 
followed by a negative rotation of Dcmt.  A3 = A1

–1A2. 
 
void Sph_One2Dcm(double *Dcm); 
 Returns the identity direction cosine matrix.  Aij = δij. 
 
void Sph_Xyz2Xyzr(double *Xyz,double *Xyzr); 
 Converts the forwards-direction yaw-pitch-roll vector Xyz to a relative direction 

change, but for travel in the reverse direction.  For example, suppose an airplane 
performs the direction change that corresponds to Xyz.  If it then turns around, with 
the local z-vector as it was initially, but with both x- and y-vectors reversed (180° 
yaw), then it needs to execute rotation Xyzr to retrace its original track.  A = Z–

1(φ)Y(θ)X(ψ).  Note that this reverses a relative direction change between two 



vectors and does not reverse an absolute vector (the airplane traveling west being 
converted to it traveling east). 

 
void Sph_Dcm2Dcmr(double *Dcm,double *Dcmr); 
 Converts an absolute dcm to a dcm in the reverse direction.  This reverses the local 

x and y directions, while preserving the local z direction.  This is unlike 
Sph_Xyz2Xyzr in that this is for absolute directions while that one was for relative 
directions.  Ar = Z(π)A. 

 
void Sph_Rot2Dcm(char axis,double angle,double *Dcm); 
 Returns the direction cosine matrix that corresponds to rotation by angle angle 

about axis axis, where this latter parameter is the character ‘x’, ‘y’, or ‘z’ (or upper-
case).  A = X(a) or A = Y(a) or A = Z(a). 

 
void Sph_Newz2Dcm(double *Newz,double psi,double *Dcm); 
 Returns the direction cosine matrix that can be used to rotate the coordinate system 

such that the original z-axis will line up with the vector Newz.  The length of Newz is 
irrelevent; it does not need to be normalized.  Additional rotation about the new z-
axis is entered with psi.  This works as follows: Newz is converted to spherical 
coordinates θ and φ, then the d.c.m. is A = Z(ψ–φ) X(θ) Z(φ), which is transposed 
to yield the active matrix. 

 
void Sph_DcmtxUnit(double *Dcmt,char axis,double *vect,double *add,double 

mult); 
 Multiplies the transpose of Dcmt (entered as a non-transposed direction cosine 

matrix) with the unit vector for axis axis (entered as ‘x’, ‘y’, or ‘z’, or upper case) 
and returns the result in the 3-dimensional vector vect.  This multiplies the result by 
the scalar mult.  If add is non-NULL, this adds add to vect before returning the result.  

 
double Sph_RotateVectWithNormals3D(double *pt1,double *pt2,double 

*newpt2,double *oldnorm,double *newnorm,int sign); 
 This is for the case where the line from pt1 to pt2 is in the plane that has normal 

oldnorm, and then the plane is rotated about point pt1 to so that its normal becomes 
newnorm.  This function calculates the new value for pt2, returned in newpt2.  newpt2 
and pt2 are allowed to point to the same memory.  Both oldnorm and newnorm need 
to have unit length.  This returns the cosine of the angle between the two normals, 
which is also the dot product of the two normal vectors.  If this cosine is 1, then the 
two normals are parallel to each other and newpt2 is set equal to pt2 because no 
rotation takes place.  If this cosine is -1, then the two normals are anti-parallel to 
each other, in which case the problem is ill-determined because the rotation axis 
cannot be determined; if that’s the case, then this function assumes that the rotation 
axis is perpendicular to the vector from pt1 to pt2, with the result that the new 
vector is in the opposite direction as the original vector.  New function Sept. 2015. 

 
 The sign input is here to allow the normals to internally inconsistent.  That is, it is 

good practice for all normals to points towards the same face of a surface, such as 
the outside or inside.  If this is the case, then enter sign as 0.  However, if this is not 



done, then enter sign as 1 if the total rotation should be less than 90° and as -1 if the 
total rotation should be more than 90°. 

 
 It is permitted to enter oldnorm as NULL.  In this case, the vector is rotated around a 

random rotation axis that is perpendicular to newnorm.  In other words, newpt2 is still 
placed in the new plane and it is still the correct distance from pt1, but the rotation 
direction to this new position is random. 

 
 The math is as follows.  Define p1 as pt1, p2 as pt2, o as oldnorm, and n as newnorm.  

Also, define p as the vector from p1 to p2, meaning that p = p2 - p1.  Also define a as 
the unit vector for the axis about which the rotation takes place; it is the line that is 
shared by the old plane and the new plane.  Define θ as the rotation angle about this 
axis.  These values are 

 

 a = o × n
o × n( ) ⋅ o × n( )

  

 cosθ = o ⋅n   
 
 The θ equation relies on the requirement that o and n have unit length.  The 

direction cosine matrix for rotation by angle θ about axis a is (from Wikipedia 
“Rotation matrix”) 

 

 

cθ + ax
2 1− cθ( ) axay 1− cθ( )− azsθ axaz 1− cθ( ) + aysθ

ayax 1− cθ( ) + azsθ cθ + ay
2 1− cθ( ) ayaz 1− cθ( )− axsθ

azax 1− cθ( )− aysθ azay 1− cθ( ) + axsθ cθ + az
2 1− cθ( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

  

 
  
  
 


