
Documentation for Sphere.h and Sphere.c

Steven Andrews, © 2005-2015

Header file

#ifndef __Sphere_h
#define __Sphere_h

/*
Cart = Cartesian coordinates (x, y, z)
Sc = Spherical coordinates (r, theta, phi)
Dcm = Direction cosine matrix (A00, A01, A02, A10, A11, A12, A20, A21, A22)
Eax = Euler angles x-convention (theta, phi, psi)
Eay = Euler angles y-convention (theta, phi, chi)
Ep = Euler parameters (e0, e1, e2, e3)
Xyz = xyz- or ypr- or Tait-Bryan convention (yaw, pitch, roll): rotate on z,
then y, then x
*/

void Sph_Cart2Sc(double *Cart,double *Sc);
void Sph_Sc2Cart(double *Sc,double *Cart);
void Sph_Eay2Ep(double *Eay,double *Ep);
void Sph_Xyz2Xyz(double *Xyz1,double *Xyz2);

void Sph_Eax2Dcm(double *Eax,double *Dcm);
void Sph_Eay2Dcm(double *Eay,double *Dcm);
void Sph_Xyz2Dcm(double *Xyz,double *Dcm);
void Sph_Xyz2Dcmt(double *Xyz,double *Dcmt);
void Sph_Dcm2Xyz(double *Dcm,double *Xyz);
void Sph_Dcm2Dcm(double *Dcm1,double *Dcm2);
void Sph_Dcm2Dcmt(double *Dcm1,double *Dcm2);

void Sph_DcmxDcm(double *Dcm1,double *Dcm2,double *Dcm3);
void Sph_DcmxDcmt(double *Dcm1,double *Dcmt,double *Dcm3);
void Sph_DcmtxDcm(double *Dcmt,double *Dcm2,double *Dcm3);

void Sph_One2Dcm(double *Dcm);
void Sph_Xyz2Xyzr(double *Xyz,double *Xyzr);
void Sph_Dcm2Dcmr(double *Dcm,double *Dcmr);
void Sph_Rot2Dcm(char axis,double angle,double *Dcm);
void Sph_Newz2Dcm(double *Newz,double psi,double *Dcm);

void Sph_DcmtxUnit(double *Dcmt,char unit,double *vect,double *add,double
mult);

double Sph_RotateVectWithNormals3D(double *pt1,double *pt2,double
*newpt2,double *oldnorm,double *newnorm);

#endif

Includes: <stdio.h>, "random.h", "Sphere.h"

History: Written 2/05. Documented 7/05. Added Eax2Dcm, Eay2Dcm, Newz2Dcm on

10/24/07. Added Sph_DcmtxUnit 5/55/12. Added Sph_Xyz2Dcmt 5/28/12. Added
Sph_RotateVectWithNormals 8/6/15.

Description

This is a collection of routines for manipulating rotational coordinates using a

variety of conventions. Note that some coordinates are for vectors (e.g. spherical
coordinates) whereas others are for transformations (e.g. Euler angles). Most of the math
here is described in Goldstein.

If two different function arguments are the same size, such as two vectors or two
matrices, then they are always allowed to point to the same memory. For example to
invert the direction cosine matrix dcm in-place, the function call is
Sph_Dcm2Dcmt(dcm,dcm). While input angles are never required to be clamped to fixed
domains, the output angle ranges are always clamped, as listed below. Input direction
cosine matrices are assumed to be valid and are not checked. The following descriptions
of the conventions uses A as a direction cosine matrix and the matrix definitions:

�

X a() =
1 0 0
0 cosa sina
0 −sina cosa

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

�

Y a() =
cosa 0 −sina
0 1 0
sina 0 cosa

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

�

Z a() =
cosa sina 0
−sina cosa 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Cartesian coordinates (Cart)
 Vector is [x,y,z], all of which are on (–∞,∞).

Spherical coordinates (Sc)
 Vector is [r,θ,φ]. r is on [0,∞), θ is on [0,π], and φ is on [0,2π).

Direction cosine matrix (Dcm)
 Matrix is given as a 9 element array, which lists the matrix row by row. This is

useful for all coordinate transformations and is not associated with any particular
convention.

Direction cosine matrix transpose (Dcmt)
 This is entered as a normal, non-transposed, direction cosine matrix. However, it is

interpreted as a transposed direction cosine matrix in the code.

Euler angle x-convention (Eax)
 Vector is [θ,φ,ψ]. θ is on [0,π], φ is on [0,2π), ψ is on [0,2π). A = Z(ψ)X(θ)Z(φ).

Euler angle y-convention (Eay)
 Vector is [θ,φ,χ]. θ is on [0,π], φ is on [0,2π), χ is on [0,2π). A = Z(χ)Y(θ)Z(φ).

Euler parameters (Eap)

 Vector is [e0,e1,e2,e3].

Yaw-pitch-roll (Xyz)
 Vector is [φ,θ,ψ]. All are on [–π,π). A = X(ψ)Y(θ)Z(φ).

Code documentation

Typical parameter names

cf cos(φ)
cq cos(θ)
cy cos(ψ) or cos(χ)
sf sin(φ)
sq sin(θ)
sy sin(ψ) or sin(χ)

Internal macros and global variables

#define PI 3.14159265358979323846
 π.

double Work[9],Work2[9];
 Scratch-space.

Externally accessible functions

void Sph_Cart2Sc(double *Cart,double *Sc);
 Converts Cartesian coordinates to spherical coordinates.

void Sph_Sc2Cart(double *Sc,double *Cart);
 Converts spherical coordinates to Cartesian coordinates.

void Sph_Eay2Ep(double *Eay,double *Ep);
 Converts Euler angle y-convention transformation to Euler parameters. Equations

from Goldstein p. 608.

void Sph_Xyz2Xyz(double *Xyz1,double *Xyz2);
 Copies yaw-pitch-roll vector Xyz1 to Xyz2, and clamps angles in the process.

void Sph_Eax2Dcm(double *Eax,double *Dcm);
 Calculates direction cosine matrix from Eular angle x-convention vector. Equations

from Wolfram MathWorld.

void Sph_Eay2Dcm(double *Eay,double *Dcm);
 Calculates direction cosine matrix from Eular angle y-convention vector. Equations

from Wolfram MathWorld.

void Sph_Xyz2Dcm(double *Xyz,double *Dcm);
 Calculates direction cosine matrix from yaw-pitch-roll vector. Equations from

Goldstein p. 609. A = X(ψ)Y(θ)Z(φ).

void Sph_Xyz2Dcmt(double *Xyz,double *Dcmt);
 Calculates transposed direction cosine matrix from yaw-pitch-roll vector. This is

just Sph_Xyz2Dcm, but for a transposed result.

void Sph_Dcm2Xyz(double *Dcm,double *Xyz);
 Calculates yaw-pitch-roll vector from a direction cosine matrix. Equations are

derived from Goldstein p. 609.

void Sph_Dcm2Dcm(double *Dcm1,double *Dcm2);
 Copies direction cosine matrix Dcm1 to a new one in Dcm2.

void Sph_Dcm2Dcmt(double *Dcm1,double *Dcm2);
 Transposes direction cosine matrix Dcm1 to yield matrix inverse in Dcm2. A2 = A1

–1.

void Sph_DcmxDcm(double *Dcm1,double *Dcm2,double *Dcm3);
 Matrix multiplies Dcm1 by Dcm2 and returns result in Dcm3. Note that the

transformation is Dcm2 first, then Dcm1, which occurs in the new coordinate system.
A3 = A1A2.

void Sph_DcmxDcmt(double *Dcm1,double *Dcmt,double *Dcm3);
 Matrix multiplies Dcm1 by the transpose of Dcmt and returns result in Dcm3 (Dcmt is

entered as an untransposed matrix). Essentially, this is a negative rotation of Dcmt
followed by a positive rotation of Dcm1. A3 = A1A2

–1.

void Sph_DcmtxDcm(double *Dcmt,double *Dcm2,double *Dcm3);
 Matrix multiplies the transpose of Dcmt by Dcm2 and returns the result in Dcm3 (Dcmt

is entered as an untransposed matrix). Essentially, this is a positive rotation of Dcm2
followed by a negative rotation of Dcmt. A3 = A1

–1A2.

void Sph_One2Dcm(double *Dcm);
 Returns the identity direction cosine matrix. Aij = δij.

void Sph_Xyz2Xyzr(double *Xyz,double *Xyzr);
 Converts the forwards-direction yaw-pitch-roll vector Xyz to a relative direction

change, but for travel in the reverse direction. For example, suppose an airplane
performs the direction change that corresponds to Xyz. If it then turns around, with
the local z-vector as it was initially, but with both x- and y-vectors reversed (180°
yaw), then it needs to execute rotation Xyzr to retrace its original track. A = Z–

1(φ)Y(θ)X(ψ). Note that this reverses a relative direction change between two

vectors and does not reverse an absolute vector (the airplane traveling west being
converted to it traveling east).

void Sph_Dcm2Dcmr(double *Dcm,double *Dcmr);
 Converts an absolute dcm to a dcm in the reverse direction. This reverses the local

x and y directions, while preserving the local z direction. This is unlike
Sph_Xyz2Xyzr in that this is for absolute directions while that one was for relative
directions. Ar = Z(π)A.

void Sph_Rot2Dcm(char axis,double angle,double *Dcm);
 Returns the direction cosine matrix that corresponds to rotation by angle angle

about axis axis, where this latter parameter is the character ‘x’, ‘y’, or ‘z’ (or upper-
case). A = X(a) or A = Y(a) or A = Z(a).

void Sph_Newz2Dcm(double *Newz,double psi,double *Dcm);
 Returns the direction cosine matrix that can be used to rotate the coordinate system

such that the original z-axis will line up with the vector Newz. The length of Newz is
irrelevent; it does not need to be normalized. Additional rotation about the new z-
axis is entered with psi. This works as follows: Newz is converted to spherical
coordinates θ and φ, then the d.c.m. is A = Z(ψ–φ) X(θ) Z(φ), which is transposed
to yield the active matrix.

void Sph_DcmtxUnit(double *Dcmt,char axis,double *vect,double *add,double

mult);
 Multiplies the transpose of Dcmt (entered as a non-transposed direction cosine

matrix) with the unit vector for axis axis (entered as ‘x’, ‘y’, or ‘z’, or upper case)
and returns the result in the 3-dimensional vector vect. This multiplies the result by
the scalar mult. If add is non-NULL, this adds add to vect before returning the result.

double Sph_RotateVectWithNormals3D(double *pt1,double *pt2,double

*newpt2,double *oldnorm,double *newnorm,int sign);
 This is for the case where the line from pt1 to pt2 is in the plane that has normal

oldnorm, and then the plane is rotated about point pt1 to so that its normal becomes
newnorm. This function calculates the new value for pt2, returned in newpt2. newpt2
and pt2 are allowed to point to the same memory. Both oldnorm and newnorm need
to have unit length. This returns the cosine of the angle between the two normals,
which is also the dot product of the two normal vectors. If this cosine is 1, then the
two normals are parallel to each other and newpt2 is set equal to pt2 because no
rotation takes place. If this cosine is -1, then the two normals are anti-parallel to
each other, in which case the problem is ill-determined because the rotation axis
cannot be determined; if that’s the case, then this function assumes that the rotation
axis is perpendicular to the vector from pt1 to pt2, with the result that the new
vector is in the opposite direction as the original vector. New function Sept. 2015.

 The sign input is here to allow the normals to internally inconsistent. That is, it is

good practice for all normals to points towards the same face of a surface, such as
the outside or inside. If this is the case, then enter sign as 0. However, if this is not

done, then enter sign as 1 if the total rotation should be less than 90° and as -1 if the
total rotation should be more than 90°.

 It is permitted to enter oldnorm as NULL. In this case, the vector is rotated around a

random rotation axis that is perpendicular to newnorm. In other words, newpt2 is still
placed in the new plane and it is still the correct distance from pt1, but the rotation
direction to this new position is random.

 The math is as follows. Define p1 as pt1, p2 as pt2, o as oldnorm, and n as newnorm.

Also, define p as the vector from p1 to p2, meaning that p = p2 - p1. Also define a as
the unit vector for the axis about which the rotation takes place; it is the line that is
shared by the old plane and the new plane. Define θ as the rotation angle about this
axis. These values are

 a = o × n
o × n() ⋅ o × n()

 cosθ = o ⋅n

 The θ equation relies on the requirement that o and n have unit length. The

direction cosine matrix for rotation by angle θ about axis a is (from Wikipedia
“Rotation matrix”)

cθ + ax
2 1− cθ() axay 1− cθ()− azsθ axaz 1− cθ() + aysθ

ayax 1− cθ() + azsθ cθ + ay
2 1− cθ() ayaz 1− cθ()− axsθ

azax 1− cθ()− aysθ azay 1− cθ() + axsθ cθ + az
2 1− cθ()

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

