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How do cells transmit biochemical signals accurately? It turns out, pushing and pulling can go a long way.
Cells trigger many of their functions in

response to environmental signals. In

this issue of Cell Systems, Andrews et al.

(2016) study how signaling reactions

should be coupled to one another to

accurately transmit signals from outside

to inside the cell. They propose that a

simple push-pull mechanism is sufficient

for cells to produce precise readouts of

external signals. In this mechanism,

the active form of a signaling molecule

‘‘pushes’’ up the concentration of a mole-

cule downstream, while the inactive form

‘‘pulls’’ it back. These opposing effects

align the activity levels of signaling

molecules along a pathway and result

in a proportional relation between recep-

tor activation and downstream signal

strength. The study casts new light on

design principles of cellular signaling,

and opens up plenty of questions for

further research.

Cells have membrane receptors that

relay external signals into the intracellular

space. External ligands bind to these

receptors and trigger signaling reactions

such as mitogen-activates protein kinase

(MAPK) cascades (Figure 1A). Andrews

et al. (2016) note an intriguing observa-

tion in the pheromone response pathway

in yeast. This system initiates signaling

upon binding of a pheromone to the

G-protein-coupled receptor Ste2, which

triggers a MAPK cascade on the scaf-

fold protein Ste5 by recruiting it to

the membrane. The last component of

the cascade is Fus3, which carries the

signal into the nucleus. Experimental

evidence shows that Ste2 and Fus3

respond similarly to the pheromone, so

that their individual response curves—

active-Ste2 and active-Fus3 as functions

of pheromone—closely resemble each

other, a phenomenon termed ‘‘dose-

response alignment.’’

Dose-responsealignmentavoidsdistor-

tion of the transmitted signal, producing
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a linear relationship between receptor oc-

cupancy and signal strength at the end

of the cascade. This strategy allows cells

to transmit a broad range of sensed

signals and enables finer control of cell

function. Misalignment of the dose-

response curves distorts the input signal

and causes the cascade to act as a

nonlinear amplifier of its input (Figure 1B).

For example, if receptor occupancy is

graded and the cascade output is more

switch-like, the cascade acts as an ultra-

sensitive amplifier; conversely, if receptor

occupancy is more switch-like than the

cascade output, the signaling cascade

will be largely insensitive and act as a satu-

rator of its input.

Dose-response alignment has been

observed across other signaling path-

ways such as insulin, acetylcholine, and

angiotensin II systems (Yu et al., 2008),

suggesting that it affects many cellular

functions. But it is unclear how cells

implement such precise alignment and,

moreover, how the precision is conserved

through the multiple signaling steps,

each with different kinetics and protein

abundances. Further, given the diversity

of signaling systems, with specific com-

ponents arranged in different architec-

tures, it is challenging to pinpoint the gen-

eral principles that guarantee response

alignment.

Andrews et al. (2016) use computa-

tional optimization to find architectures

that can produce dose-response align-

ment. The authors searched for

optimal model parameters that mini-

mize an objective function representing

the mismatch between dose-response

curves for various architectures. The

advantage of optimization is that, instead

of studying a signaling system with

given kinetics, it allows sweeping over

the whole space of kinetic parameters.

Their procedure revealed two architec-

tures that produce perfect dose-response
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alignment: a push-pull system and a

negative feedback from a saturated

downstream enzyme. The push-pull strat-

egy is commonly found in bacterial two-

component regulatory systems, such as

the EnvZ-OmpR system for osmoregula-

tion in E. coli, while negative feedback

has been reported in the yeast phero-

mone pathway itself, where Fus3 inhibits

the recruitment of the scaffold Ste5 to

the membrane (Yu et al., 2008). The nega-

tive feedback also bears similarities with

regulation of the MAPK-ERK signaling

pathway (Sturm et al., 2010), where ERK

represses that activation of upstream

signaling and linearizes the overall sys-

tem response. The approach by Andrews

et al. (2016) was able to identify architec-

tures that are present in other systems

found in nature, thus suggesting that opti-

mization can effectively identify design

principles that apply to a broad class of

signaling pathways.

Beyond the study of natural systems,

optimization is becoming increasingly

relevant for the design of molecular cir-

cuits in synthetic biology. The field is mov-

ing from small-scale gene circuits to more

complex systems that interface across

layers of the cellular machinery (Oyarzún

and Stan 2013). As the repertoire of bio-

logical parts grows, so does the number

of ways in which they can be assembled,

as well as the number of circuit architec-

tures that produce the same function.

Automated design techniques are proving

powerful strategies for biological circuit

design (Nielsen et al., 2016); these use

optimization algorithms to navigate the

design space and single out the best cir-

cuit blueprint for a desired function and

implementation constraints.

To untangle the complexity of cellular

systems, it is useful to find suitable

descriptions that encompass the most

fundamental aspects of their architec-

ture but avoid reliance on exhaustive
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Figure 1. Input-Output View of Signaling Pathways
(A) Typical signaling system composed of a membrane-bound receptor and
an intracellular signaling cascade. Signaling systems have different dose-
response curves from ligand concentration to occupied receptors and
downstream signaling.
(B) Block diagram of a signaling system. When the dose-response curves are
perfectly aligned, the signaling cascade maps receptor occupancy into
downstream activation in a linear fashion. Misalignment of the dose-response
curves in (A) causes the cascade to behave as a nonlinear amplifier with varied
input-output responses.
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mechanistic details of all

biochemical interactions. At

the core of Andrews et al.

(2016) is the idea that

signaling pathways can be

seen as input-output sys-

tems. These descriptions are

popular in many engineering

disciplines, and there is a

reason why engineers love

them. Input-output models

are high-level descriptions

that highlight the depen-

dencies among system com-

ponents rather than their indi-

vidual details. When studying

biochemical networks that

are interwoven with feedback

and feedforward interactions,

input-output thinking allows

us to zoom out and lump

several processes into a

‘‘black box’’ (Del Vecchio

et al., 2016). This is particu-

larly useful for revealing

system-level principles when

the biochemical details are

difficult to measure, un-

known, or not relevant to the

phenomenon of interest.

Signaling pathways are

particularly amenable to

input-output descriptions, as
they can be thought of as separate mod-

ules: a sensing module representing re-

ceptor-ligand binding, a signal transmis-

sion module composed of signaling

cascades, and a nuclear internalization

module (Figure 1B). A word of caution,

however: ‘‘inputs’’ and ‘‘outputs’’ are just

abstractions, and thus, they are only

meaningful in the context of the particular

scientific question at hand. This is a sub-

tle but important distinction, especially

when comparing design principles across

different pathways or organisms. For

example, there are other instances of

linear input-output responses in the EGF

and Epo systems (Sturm et al., 2010;

Oyarzún et al., 2014; Becker et al., 2010)

that are conceptually similar to the results

by Andrews et al. (2016) but slightly

different when the input-output definitions

are taken into account. While Andrews

et al. (2016) describe a linear relationship

between receptor occupancy and down-

stream phosphorylation, Sturm et al.

(2010) reported linearity between ligand

dose and phosphorylation of downstream
signaling molecules, whereas Oyarzún

et al. (2014) and Becker et al. (2010)

showed a linear response between

ligand dose and the time-integrated

phosphorylation of membrane receptors.

Although all these results may be

equally described as ‘‘linear input-output

behavior,’’ this can be misleading unless

we specify how inputs and outputs were

defined. Therefore, to ascertain the gen-

erality of design principles in different

networks, caremust be taken to use com-

parable input-output definitions across all

systems.

Thework byAndrews et al. (2016) brings

to the surface several questions for future

investigations. It remains to be determined

if the push-pull and feedback topologies

are robust to parameter variability or

whether other signaling architectures can

implement a more robust (but imperfect)

alignment. This could be studied with Par-

eto optimality,which allowsfindingoptimal

trade-offs between mutually conflicting

objectives. The analysis could also be

extended to a larger family of signaling
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architectures by including

both parameters and architec-

tures in the optimization

search. Such problems can

be addressed with mixed-

integer optimization algo-

rithms, which can account for

the network topology itself as

an optimization variable. It is

further unclear what types of

cell responses benefit from

dose-response alignment as

opposed to, for example,

signal amplification or satura-

tion. Some strategies may

outperform others depending

on environmental conditions

and intracellular trade-offs

that limit cellular physiology

(Weiße et al., 2015). Informa-

tion theory can also provide a

general toolkit to study signal

transmission and has opened

new avenues to understand

cellular pathways (Cheong

et al., 2011). Optimization and

information theory are just

some of the disciplines that

canhelpuncover thecomplex-

ities of cellular signaling. Novel

approaches are much needed

if we wish to truly understand

signaling in the context of
larger systems, such asmicrobial commu-

nities, developmental pathways, and dis-

ease-relevant networks, all of which are

at the core of future progress in therapeu-

tics and biotechnology.

Cells need accurate mechanisms to

control how and when to initiate re-

sponses to external stimuli. The work by

Andrews et al. (2016) provides new in-

sights into how signaling pathways can

transduce external cues. Their approach

harnesses the power of optimization and

input-output thinking to uncover princi-

ples of biological organization, a strategy

that can greatly benefit other areas of

basic biological research, as well as the

design of biomolecular networks in syn-

thetic biology.
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Organs-on-chips are beginning to serve as a useful platform for individualized disease models in a way that
minimizes patient-to-patient variability.
Organs-on-chips offer the potential to

recapitulate human physiology by cul-

turing human cells in precise three-dimen-

sional architecture and compartments, fed

with native-like chemical and mechanical

cues. In this issue of Cell Systems, Benam

et al. (2016) take a step toward demon-

strating one such organ-on-chip system

as an effective disease model. They

engineered an apparatus to ‘‘breathe’’

cigarette-smoke-filled air over a human

lung-on-a-chip, and measured systems-

level responses from human small air-

way epithelial cells. Comparison of res-

ponses with or without stimulus revealed

nuanced differences and potentially novel

biomarkers.

Early work on organs-on-chips lever-

aged advances in tissue engineering

andmicrofabrication to formminiaturized

compartments containing multiple hu-

man cell types (Sin et al., 2004). Such

systems offer precise spatial architecture

and dynamic physiochemical environ-

ments compared to homogeneous 2D

or 3D cell cultures and systematic pertur-

bations on human cells compared to live

animal models (Bhatia and Ingber, 2014).

The breathing human lung-on-chip sys-

tem, which was first introduced by the

same research group (Huh et al., 2010),

recapitulated the epithelium between

the air sac and the bloodstream and

took advantage of a mechanically flexible
material in the microfluidic chip to in-

corporate a breathing motion. Subse-

quently, organs-on-chips have been em-

ployed in the study of kidney (Jang et al.,

2013), gut (Kim and Ingber, 2013), liver

(Bhise et al., 2016; Ebrahimkhani et al.,

2014), heart (Grosberg et al., 2011), and

skin (Abaci et al., 2016). These studies

have ranged from subjecting cells to cy-

cles of mechanical stretch and release

(to mimic the forces of peristalsis in a

gut) to examining cellular injury from

chemotherapy.

In this study, Benam et al. (2016) incor-

porated a microrespirator (which mimics

the inward and outward air movement

by the rib cage and diaphragm) and

airway (lined by human bronchiolar

epithelium cells from healthy subjects or

patients with chronic obstructive pulmo-

nary disease). They also added a smoke

machine, which exposed the cells to

whole cigarette smoke, and applied hori-

zontal shear forces across cell surfaces.

The researchers found that this method

produced more precise results than

Transwell methods, which require that

the epithelium be submerged in a cell cul-

ture medium in order to be exposed to

cigarette smoke extract in solution.

Compared to studies with live animal

models or human subjects, an important

advantage of this organ-on-chip system

is patient-normalized comparison of bio-
logical responses. Here, cells lining the

microfluidic channels are sourced from

the same individual and cultured in the

presence or absence of an environmental

perturbation (smoke exposure). Such

patient-matched comparisons have the

potential to uncover phenotypic differ-

ences masked in clinical studies, which

insufficiently account for inter-individual

variability among multiple study groups

and different subjects.

Key results of the study include the

identification and validation of genes

upregulated upon smoke exposure, in-

cluding a confirmation of the upregulation

of Cytochrome P450 Family 1 Subfamily

B. In addition, the researchers performed

time-lapse imaging and applied spectral

analysis to determine the beating fre-

quency of cilia on epithelial cells. The

study showed that smoking produced a

heterogeneous effect on ciliary beating

across the epithelium, with some areas

beating normally and other areas beating

at reduced rates. The researchers also

identified about 10 genes that could

distinguish responses to smoke exposure

in diseased, compared to healthy, lung

epithelium. More work will have to be

done to validate these biomarkers and

determine whether the patient-matched

model leads to new biological insights,

but in this manner, the researchers

augmented the likelihood of identifying
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