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Previous work using the Born-Green-Yvon (BGY) integral equation approach has been 
extended to investigate the case of a pure compressible lattice fluid, yielding the equation of 
state as our main result. We show that the BGY equation does a very good to excellent job at 
fitting the experimental pressure-volume-temperature surface for both small molecules and 
polymers; the fit parameters are then used to make predictions about thermodynamic 
properties for the system of interest. We note that two other equations of state can easily be 
obtained from the BGY equation, and compare results using BGY and other equations of 
state. We also comment on the agreement between the BGY description in the athermal limit, 
which is equivalent to Guggenheim’s treatment of random mixing, and some lattice Monte 
Carlo results. 

I. INTRODUCTION 

In previous workIs one of us (J. E. G. L.) has outlined 
the theoretical treatment of a binary, incompressible lattice 
mixture using the Born-Green-Yvon integral equation ap- 
proach. It has been shown how the thermodynamic descrip- 
tion of such a system could be derived analytically, and the 
BGY results have been compared with those from simula- 
tion studies and other lattice theories. The next goal in this 
work involves extending the lattice model to the case of a 
compressible mixture; at that stage comparison with experi- 
mental results and with treatments incorporating free vol- 
ume effects will become possible. In doing so, it will be neces- 
sary to use information characteristic of the pure 
components; typically such information is obtained by fit- 
ting experimental pressure-volume-temperature (PVT) 
data to an equation of state derived for the pure component, 
in order to extract “characteristic parameters.” Different 
choices for the three parameters can be used, but a common 
set is the nonbonded nearest-neighbor interaction energy, E, 
the number of contiguous lattice sites occupied per chain, r, 
and the volume associated with a lattice site, Y. Before pro- 
ceeding to the case of a compressible mixture, it is important 
to study the compressible pure fluid problem, and that is the 
focus of the present study. 

Among the questions to be answered here are: Can the 
BGY theory yield a good fit to experimental PVT data? Can 
it predict a liquid-vapor transition? Can the fit parameters 
be used to predict other thermodynamic properties? Finally, 
how does this description compare with other equations of 
state? Many such equations have been obtained, and some of 
these have been very successful at describing pure fluids. The 
questions listed here are addressed in the following manner: 
In Sec. II the BGY theory is used to derive the equation of 
state for a compressible fluid. In Sec. III the equation is ex- 
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pressed in reduced variables along with other equations of 
state to be compared with BGY. In Sec. IV the athermal 
version of the BGY result, which is equivalent to Guggen- 
heim’s treatment of random mixing,3p4 is compared with lat- 
tice simulation results, and in Sec. V the complete BGY 
equation of state is applied to experimental data on n-alkanes 
and several polymers, and the results are compared with 
those using the equations listed in Sec. III. Our conclusions 
are discussed in Sec. VI. 

II. THE EQUATION OF STATE FOR A COMPRESSIBLE 
PURE FLUID 

We model the compressible fluid as a mixture of rNoc- 
cupied lattice sites, and Nh unoccupied sites, or holes; we 
imagine the occupied sites to be connected such that rcontig- 
uous sites are associated with a molecule. The fractions of 
occupied and unoccupied sites are denoted 4 and +,, , respec- 
tively, where 

d=rN/(rN+Nh), & =Nh/(rN+Nh). (1) 
The interaction energy associated with nonbonded nearest- 
neighbor segments is E; the empty sites do not contribute 
towards the total potential energy of the system. As in the 
study of incompressible mixtures,’ we also define a concen- 
tration variable which accounts for the nearest-neighbor 
connectivity of the molecules, 

!C=qN/(qN+N,), C,, =N,J(qN+N,t), 
where 

(2) 

q.z=n-2r+2. (3) 
z is the lattice coordination number and n is the number of 
nearest-neighbor contacts associated with r disconnected 
(and separated) segments; qz is the maximum number of 
nearest-neighbor contacts for a linear chain having r seg- 
ments. Hence the use of 6 incorporates to some extent the 
effects of chain connectivity in the molecule. Here we as- 
sume that the smallest unit offree volume in the lattice is that 
associated with one lattice site. 

Using the results of Ref. 2, the change in internal energy 
associated with mixing N r-mers with N,, holes is given by 
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wherep = l/k, T and N, is the total number of lattice sites. 
This result is obtained using Eq. (14) of Ref. 2 with 
E, , = e,2 = 0, and l 22 = E. In deriving an expression for the 
Helmholtz energy of the fluid we make use of the Gibbs- 
Helmholtz relationship 

(5) 

and take the lower limit of the integration (i.e., Tapproaches 
infinity) to be associated with the free energy of a pure fluid 
with holes randomly distributed throughout the lattice. 
Thus we approximate the athermal free energy by an esti- 
mate for the free energy associated with “randomly mixing” 
the holes and segments; in particular, the expression devel- 
oped by Guggenheim4 (denoted GRM for Guggenheim 
random mixing) is used here 

-y(j+RM) =qSh In& + (d/r) ln$+ (z/2) 
0 B 

X [A M&J&J + (qhMln(5/+)]. 
(6) 

Putting together Eqs. (4) through (6), the free energy 
change associated with mixing the holes and segments to 
form a compressible fluid at temperature T is given by 

P”mix -= 

No 
-+ln[cexp( -De) +Sh] 

+ A In& +$lnC 
1 

This result can be used to obtain the equation of state, since 

p= _aal 
av T’ (8) 

Using Eqs. (7) and (8) we find 

P-h 
1 

In+, +Iln(?)+c(I --!-) 

++a(;- 1)+f!q5~~-~)+~,]]? 

(9) 
where Y is the volume per lattice site. Given the definition of 
q from Eq. (3) it can be seen that, unless q is set equal to r (if 
nearest-neighbor connectivity is neglected, or if r = 1)) the 
third and fourth terms on the right-hand side of Eq. (9) will 
cancel. Equation (9) is the central result of this paper. In the 
following section we will express the equation of state in 
reduced variables and compare our result with those of sev- 
eral other theoretical treatments. 

Ill. COMPARISON IN REDUCED VARIABLES OF THE 
BGY RESULT WITH OTHER EQUATIONS OF STATE 

It is usual to express an equation of state, such as Eq. 
(9), in reduced variables. Here we shall mainly follow the 
notation of Sanchez and Lacombes in writing four of the five 
equations to be used. The four equations other than BGY 
are: the lattice fluid model (LF) derived by Sanchez and 
Lacombe,’ the lattice cluster (LC) model,6 using the poly- 
mer equation of state which was developed by Bawendi and 
Freed,’ the result obtained by Panayiotou and Vera’ (PV) 
using some concepts introduced by Guggenheim,3 and the 
Simha-Somcynsky’ (SS) equation. It is difficult to find no- 
tation which is equally suited to expressing all of these equa- 
tions in reduced form; for example, the LF notation is not 
convenient for writing the Simha-Somcynsky result in that 
it would make their equation artificially complex (and unfa- 
miliar). The reduction parameters for the other equations 
are given by 

!i-k T/T*, T*=zd2kB, 

F=P/P*, 
(10) 

P * =zE/2v. 

Sanchez and Lacombe’ usep, where we have used 4; we 
will continue using both 4 and { as our dimensionless con- 
centration variables. In reduced form the BGY equation of 
state becomes 

~+T[ln(l-4)-(2/2)ln[(l-$)/(1--g)] 

+ (1 - W%&,, + W2VgT2] = 0, (11) 
where S,, is the Kronecker delta, and J is given by 

J= [exp( - 2/zij - l]/[{exp( - 2/zF) + (1 -l>]. 

(12) 
The presence of the term with the Kronecker delta is related 
to the discussion above regarding the third and fouth terms 
in Eq. (9). The LF equation of state5 is 

~+IT[ln(l-~)+(1-l/r)~]+r+42=0. (13) 

The LF result can be obtained from the BGY result by 
setting q = r (therefore 6 = 4) and by expanding J and 
keeping only terms to 0 (@) . The PV equation of state’ is 
F+‘1T[ln(l-f$) - (z/2) 

Xln[(l -#)/(l -g)l +c2=0. (14) 
The PV result can be obtained from the BGY result by 

expanding J to 0 (DE). Note that the appearance of { ‘s im- 
plies that q # r. Thus the LF and PV results are obtained as 
simplified versions of the BGY result. The above three equa- 
tions retain a formal dependence on r, both in the term asso- 
ciated with the factor or l/r (BGY and LF) and in the pres- 
ence of 6 (BGY and PV) . 6, defined in Eq. (2)) can also be 
written as 

l=qV[d+ (dq)(l --#)I. (15) 
As r becomes very large, r/q-+z/(z - 2) and so all 

equations are expected to obey a corresponding states princi- 
ple for the polymer case. The LC equation of state for poly- 
mer&j is given by 
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P+T[ln(l-4) +#++“(l/T-4/!?z+ l/z!? 

+ l/z + 3/2) + 43(4/Fz - 4//T*z - 20/3t) 

+ 1$“(3/?*z + 6/zZ) 

+O[N-‘,z-3,2F--z-*,4(7?z)-*]] =o. (16) 

Finally, the SS equation of state’ is given by 
F)IFI/TI = [ 1 _ 2 - “6y(,,~v’, - l/3] - 1 

+ (2y/“T’) (#‘) - * 

x [ l.Oll(yt’) -* - 1.20451, (17a) 
where the primes serve as reminders that the reduction pa- 
rameters are different for the SS equation. y is the fraction of 
occupied sites, depending here on r and on an additional 
parameter, c, defined such that there are 3c external degrees 
of freedom per chain. Here the reduced variables are 

v = v/Nrv*; IT’ = c/(qzfle); PI = prv*/qzc, 
(17b) 

where U* is the characteristic volume per segment of the 
chain. 

IV. COMPARISONS WITH OTHER EQUATIONS OF 
STATE AND MONTE CARLO RESULTS FOR ATHERMAL 
MELT 

In the athermal limit (E = 0) the BGY description re- 
duces to the GRM equation of state.3 Dickman and Hall, 
working both togetherlO~ll and separately,12v13 have studied 
athermal chains. Most of what follows will reference Monte 
Carlo (MC) data on lattice chains;13 a comment related to 
some of the continuum results” will appear in Sec. VI. 

In making comparison with the simulation data there 
are two quantities of interest. One is the insertion probabili- 
ty,p( $,r), which is the probability that a randomly chosen r- 
mer, placed at random into a randomly chosen configuration 
of Nr-mers on a lattice of No sites, will not overlap with any 
of the other chains on the lattice.” As Bawendi and Freed 
noted,’ this can be easily obtained once an expression for the 
free energy of the system is known. The result for GRM is 

(I/r) lnp($,r) = ln(1 - 4) 

- [(r- 1)/r] ln[(l -$)/(l -<)I. 
(18) 

This can be compared with the Flory-Huggins (FH) result, 
which would include only the first term on the right-hand 
side, and with the LC result of Ref. 7.14 Monte Carlo results 
are available in both two and three dimensions. Figure 1 
from Ref. 13(a) shows data for a simple cubic lattice, and 
illustrates the difference in the three theoretical predictions 
for chains of length 5,10, and 20 segments. It is important to 
note that what we (and others) denote “Flory-Huggins,” 
Hertanto and Dickman13 call “Flory;” they refer to GRM as 
“Flory-Huggins.” For r = 5 both the GRM and LC theories 
agree extremely well with the MC predictions; this is also 
true for r = 10, 20, but the LC equation does marginally 
better for the longest chain length. This may be because 
GRM accounts for connectivity only with respect to nearest- 
neighbors, while LC is supposed to incorporate longer-range 

effects. For the case of thermodynamic properties where in- 
teractions are only counted to nearest-neighbor, the two 
have been shown to agree even more closely, for some 
cases.15 Note that FH does rather poorly over the entire 
concentration range, even for low chain lengths. 

A quantity of greater practical interest is the compress- 
ibility factor, w, defined as 

w = P V, /RT = PIT/# RT. (19) 
Once an expression for the equation of state is obtained it is 
straightforward to work out the result for the compressibili- 
ty factor. For GRM this is 

WGRM=l-(r/~)[~+In(l--)l 

+ Cd241 ln[(l-4)/(1-6)1+ (r- 1). 
(20) 

The result using FH, tiFH, is given by the first three 
terms on the right-hand side of Eq. (20).16 Figure 1 from 
Ref. 13(b) shows several sets of Monte Carlo data for the 
simple cubic lattice, along with the predictions using the 
GRM, FH, and LC equations, combining results from simu- 
lations in which the chain length was fixed at r = 40 with 
those in which there was a uniform or bimodal distribution 
of chain lengths about an average of r = 40. It is interesting 
that these simulation data would seem to indicate that there 
is little (if any) effect on the compressibility factor of having 
these kinds of molecular weight distributions. The theoreti- 
cal results were all obtained using r = 40. FH is consistently 
higher than the simulation results, but does show the correct 
curvature. At low densities LC is a little closer to the simula- 
tion results, but at higher densities LC and GRM are indis- 
tinguishable. Taking the case of a chain with r = 40, and 
approximating the volume of a lattice site to be about 
( .009/N,,, ) L/mol, where N,,, is Avogadro’s number, vol- 
ume fractions of 0.2 and 0.8 would correspond to molar vol- 
umes of about 1.8 and 0.45 L, respectively. Thus the liquid 
regime will be associated with values of 4 close to 1, and in 
this region GRM is in excellent agreement with the simula- 
tion results. 

V. COMPARISON WITH EXPERIMENTAL DATA AND 
OTHER EQUATIONS OF STATE 

Refering to the questions raised in Sec. I, we shall first 
investigate how well the BGY equation of state can fit ex- 
perimental PVT data and compare our results to those using 
other theoretical approaches. We can also consider, for 
small molecule fluids, the ability of BGY to predict a liquid- 
vapor transition. In addition, other thermodynamic proper- 
ties such as the thermal expansion coefficient will be of some 
interest. In the tlrst portion of this section we shall focus on 
n-alkanes, and will then examine several polymeric systems. 

Since there are comprehensive PVT data sets available 
for the homologous linear alkanes” we chose to study a 
series having between four and twenty carbons per molecule. 
Figure 1 shows the BGY fit to a series of isotherms for n-C5 
(pentane), n-Cl0 (decane), and n-C20 (eicosane). The re- 
sults were obtained by fitting the experimental PVT surface 
for the liquid [using Eq. (9) ] thus determining best values 
for the three parameters Y, e, and r, while keeping z fixed. 
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tainty for the ith data point, which was taken here to be a 
constant (in fact, one). In order to compare fits on different 
data sets (in particular, having pressure ranges which dif- 
fered by an order of magnitude or more) a reduced chi pa- 
rameter was developed, analogous to the coefficient of vari- 
ation used in one-dimensional statistics 

x r = [x*/(n - 3)1”*. (22) 
(Xl, *Pi l/n 

YOlYrn , “mot*, 

This merit function ranged from 0.03 to 0.20 for excel- 
lent to good fits. For the n-alkanes we used data sets at both 
high (between 20 and 200 MPa) and low (20 MPa or less) 
pressure. I9 Table I summarizes the fit parameters and xr 
values for the n-alkane series. Looking at Fig. 1, it can be 
seen that BGY works extremely well for n-C5, and quite well 
for n-Cl0 and n-C20. Since fit results using the PV equation 
of state’ were only available for n-C5 and n-C7 among the 
linear alkanes we shall focus on n-C5 in comparing BGY 
with other equations of state. 

Consider first the fit parameters and the z dependence of 
the fit, as a function of the alkane chain length. Two combi- 
nations of the fit parameters are particularly suited to illus- 
trate the effect of chain length: rv, the hard-core volume per 
molecule, and qzE, the interchain interaction energy asso- 
ciated with the maximum number of (nonbonded) nearest- 
neighbor contacts per chain. Figure 2 shows these quantities 
plotted against the number of carbons per molecule for dif- 
ferent values of z. Figure 2 (a) illustrates the excellent corre- 
lation between the hard core volume and the chain length; 
note that changing the lattice coordination number between 
6 and 12 has no effect on these results. The hard-core vol- 
umes calculated here correlate well with values of the van 
der Waals b constant; for n-C4 to n-Cl0 rvranged from 58% 
to 64% of b.*’ The insensitivity to choice of z, and linear 
correlation with number of carbons are also visible in Fig. 
2 (b) where qze is plotted; the negative slope of the plot is due 
to the fact that the nearest-neighbor interaction energies are 
negative. While qze varies with the number of carbons, the 
energy density ~/~stays reasonably constant throughout the 
series; the average is 166 + 14.3 J/mL. For the same subset 
of n-alkanes discussed above (n-C4 to n-ClO) these energy 

FIG. 1. BGY fit to experimental data (open symbols). (a) n-C5, isotherms 
are for T= 293,313,333,353,363,373,383,393 K; (b) n-ClO, isotherms 
for the same set of temperatures as in (a); (c) n-C20, isotherms are for 
T= 373,423,473,523,573 K. 

TABLE I. Results from BGY fit to data on n-alkanes. 

The fits were done using a series of z values between 6 and 12; 
the effect of changing z is discussed later in this section. The 
best fit was considered to be that which minimized the chi 
square function’* 

Alkane r Y E  X, 
(mL/mol) (J/mol) 

P( Vi,Ti,a) - pi * Jf=$, [ U [ 1 ’ (21) 

where P( Vi, Tj ,a) represents the calculated value of P using 
independent variables Vi and Ti, and parameters r, Y, and E 
are represented by the vector a; Pi is the experimental value 
for the pressure at Ti and Vi. oi is the measurement uncer- 

n-C4 
n-C5 
tl-C6 
n-C7 

n-C8 
n-C9 
n-Cl0 
n-Cl1 
n-Cl3 
n-C17 
n-C20 

9.378 8.335 - 1324 0.078 24 
12.07 7.747 - 1379 0.044 78 
11.11 10.04 - 1534 0.071 17 
13.64 8.983 - 1468 0.156 4 
11.25 12.81 - 1715 0.085 58 
16.51 9.236 - 1532 0.170 8 
19.82 8.484 - 1586 ,060 13 
19.86 9.177 - 1576 0.173 1 
22.22 9.569 - 1628 0.195 4 
28.65 9.554 - 1698 0.126 8 
30.95 10.42 - 1780 0.111 1 
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FIG. 2. Dependence on the alkane chain length of (a) rv and (b) qzc. 0 
z=6;Oz=9;Az= 11. 

densities ranged from 50%-100% of the cohesive energy 
density*’ for the alkane of interest. 

Figure 3 shows fits to the PVT data to three isotherms 
(293,353, and 393 K) of the data for n-C!5 using the LF’ and 
PV* equations of state [ Eqs. ( 13) and ( 14)) respectively]; 
these should be compared with the BGY result, shown in 
Fig. 1 (a). There are many equations of state which have 
been used successfully in fitting PVT data on small mole- 
cules; these two treatments were chosen because of their re- 
lationship to the BGY result, as discussed in Sec. II. Both the 
PV and LF results were plotted using parameters obtained 
from the literature. The BGY description comes the closest 
to the experimental data over the whole temperature range. 
Both PV and LF do reasonably well at 20 “C, while by 80 “C 
both are rather far off. 

20 

*I 
2 15 
w 

p” 
t 10 
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$ 5 

a 

0 
0.11 0.12 0.13 0.14 0.15 

Volume ( L/mole) 

FIG. 3. Fit to experimental data on n-C5 using PV---and LF-. .-. Isotherms 
are for T= 293,353,393 K. 

Thus far, the focus has been on the liquid state. Is BGY 
capable of predicting a phase transition? If so, how well can 
it do at estimating the critical point? Figure 4 answers one of 
these questions: Using the fit paramters obtained through a 
fit of the liquid state data for n-C5, a series of isotherms were 
generated which indicate the presence of a critical point ( T,, 
V,, PC) and, below that, a two-phase region showing a van 
der Waals-type loop. The liquid-vapor coexistence curve 
can be mapped out by using an equal-area construction to 
identify the molar volumes of the gas and liquid in equilibri- 
um below T,. A plot of the predicted molar volumes for n-C5 
as a function of temperature is shown in Fig. 5 (a), which 
also includes the experimental results. Since the BGY fit was 
to the liquid data it is no surprise to see the theoretical curve 
fill right on those data points; the correlation with the vapor 
data, however, is very good as well. Figure 5 (b), a plot of the 
predicted vapor pressure for n-C5 as a function of tempera- 
ture, also shows how well the BGY treatment does at de- 
scribing the vapor phase. The agreement with experiment is 
excellent over the range of temperatures, although it does 
appear that the two are closer at lower temperatures. In fact, 
the percent deviation from the experimental results is re- 
duced as T, is approached; this can be illustrated by a semi- 
log plot of P vs T, which is not shown. 
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FIG. 4. A series of isotherms for n-C5 using the parameters obtained from 
the fit of liquid PVT data. The temperatures (from top to bottom) : 600,550, 
490,450 (K). 
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FIG. 5. (a) Molar volume of n-C5 vs temperature. (b) Saturation vapor 
pressure of n-C5 vs temperature. The solid line is the BGY prediction and 
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From Figs. 4 and 5 it can be seen that there is some 
disagreement between the predicted and experimental val- 
ues of the critical point for n-C5. In fact, considering that the 
description is almost certainly a mean field one, BGY does 
remarkably well at predicting the critical points for the series 
of n-alkanes. This is illustrated in Fig. 6  in which the theo- 

100 1 I 
0 5 10 15 20 

Number of carbons 

FIG. 6. A comparison of the predicted (open squares) and experimentally 
determined (filled squares) critical temperatures of the n-alkanes. 

retical predictions for T, are compared with the experimen- 
tal results for n-C4 to n-C20. The BGY predictions are in 
excellent agreement with the experimental results although 
they tend to be a little high for n-alkanes associated with the 
low-pressure data, and are a bit below the experimental re- 
sults for the cases in which high-pressure data were used. 

Finally, for some of the n-alkanes the fit parameters 
were used to look at derivatives of the PVT surface. Figure 7 
shows the isothermal compressibility, K, as a function of 
pressure for a series of temperatures for n-C5. K is defined as 

(23) 

The agreement between the BGY predictions and the experi- 
mental results is good throughout, and is excellent in the 
middle range of temperatures. This trend is also seen for the 
related derivatives (Y (the thermal expansion coefficient), 
and y (the thermal pressure coefficient). 
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Next, we shall consider data on three polymeric sys- 
tems, all in the melt phase: polystyrene (PS) ,** poly (ortho- 
methylstyrene) ( PoMS ) ,23 and poly ( vinylacetate ) 
(PVAc) .24 The fit parameters are listed in Table II. For the 
polymer data r’ and q’ were used, where r’ = r/M, and 
q’ = q/M,. MO is the mass associated with the portion of the 
chain occupying one lattice site. Using r’, q’, and the specific 
(instead of the molar) volume leave Eq. (9) unchanged in 
form, and allows us to fit the experimental data without hav- 
ing to specify a molar mass for the polymer. Figure 8(a) 
shows the PVT fits to data on polystyrene, over a tempera- 
ture ranging from 373 to 504 K, with the three isotherms at 
422,463, and 504 K highlighted. The BGY fit is very good, 
although it overestimates the curvature of the isotherms a 
little at the higher temperatures. In Fig. 8(b) the BGY fits 
for the three isotherms highlighted in Fig. 8(a) are com- 
pared with those fits obtained using the LF, LC, and SS 
equations. For these data all of the fits were done by us, using 
the approach outlined in Sec. IV; the fit parameters are given 
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FIG. 7. A comparison of the predicted (solid curves) and experimentally 
determined (filled squares) coefficient of isothermal compressibil i ty of n- 
C5, as a function of pressure. The isotherms range from 293 to 393 K (top to 
bottom) in increments of 20 K. 
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TABLE II. Results from fits to PVT data on polymers. 

J” Y 6 xr 
(mL/mol) (J/mol) 

Polystyrene 
BGY 102.7 8.472 

76.10 11.76 
p”$: E= 848.1 + T(0.5479) (J/mol), v* = N= 0.8803 (mL/g);.r, = 0.048 88 

- 2126 0.040 46 
1896 0.080 85 

LF: T* = 689.3 (K), P* = 425.8 (MPa),p* = 1.120 (g/mL);x, = 0.058 28 
ss (cell)d: T* = 4858 (K); V* = 0.9044 (mL/g); P* = 666.5 (MPa);,y, = 0.019 99 

Poly(orthomethylstyrene) 
BGY 92.61 9.655 
LC 72.48 12.63 
PV: e = 764.0 + T(0.8494) (J/mol), v* = rv = 0.9CMXl (mL/g);x, = 0.066 54 
LF: T* = 768.0 (K), P* = 379.0 (MPa),p* = 1.079 (g/mL);x, = 0.1432 
SS (cell): T* = 5128 (K); V* = 0.9280 (mL/g); P* = 600.6 (MPa);x, = 0.049 14 

- 2267 0.045 53 
1989 0.099 55 

Poly(vinylacetate) 
BGY 136.4 5.498 
LC 91.30 8.566 
PV: e = 10.0 + r( - 0.029 29) (J/mol), v* = TV = 0.7850 (mL/g); x, = 0.094 64 
LF: T* = 590.0 (K), P* = 508.7 (MPa),p* = 1.283 (g/mL);x, = 0.072 81 
ss (cell): T* = 3782 (K); V* = 0.7731 (mL/g); P* = 756.6 (MPa);x, = 0.01247 

- 1732 .030 91 
1627 .069 80 

“For the fits to the data on polymers Eq. (9) was rewritten in terms of specific (not molar) volumes, and J = r/M, and 4 = q/M, were used in place of rand 
q, where M,, represents the mass of chain occupying a lattice segment. 

bSee Ref. 8; the authors fixed volume per lattice site at 9.75 mL/mol. Note opposite sign convention for e. 
‘See Ref. 5 for both definitions and values of these parameters for PoMS and PVAc. 
d See Ref. 9 for both definitions and values of parameters for PoMS and PVAc; r/3c is set to equal one. 

in Table II. The SS equation of state does the best job of 
fitting over the entire range of molar volumes, particularly at 
higher temperatures. However, looking, for example, at the 
low-pressure portion of the isotherm at 504 K, it can be seen 
that the BGY curve comes next, closely followed in this case 
by PV, then SL and LC. 

Figures 9 and 10 are analogous to Fig. 8 in that the BGY 
fits are shown in part a, with the results using other equa- 
tions of state illustrated in part b. For these cases only the 
BGY and LC fits were done by us; the other fits shown were 
plotted using parameters obtained in the literature for the 
relevent data sets (see Table II). In Fig. 9 the polymer of 
interest is poly (ortho-methylstyrene), and in Fig. 10 it is 
poly(vinylacetate). In both cases BGY does a very good job 
at fitting the PVT data over a wide range of temperatures. 
Indeed, as was seen in Fig. 8, only SS does a consistently 
better job at describing the experimental results. Note that 
although the BGY and PV fits were very close for the poly- 
styrene data, BGY is distinctly better for the lowest-tem- 
perature isotherm in Fig. 10(b) for poly(vinlylacetate). 

In Fig. 11 we compare the BGY prediction for a, the 
thermal expansion coefficient, with experimental results for 
poly ( vinlyacetate ) 24 over pressure ranging from one to 80 
M Pa. a is defined as 

(24) 

The BGY prediction is within + 8% of the experimental 
result over this range in pressure. The best agreement with 
experimental data is in the middle of the pressure range, as 
noted in the analysis of the results for n-pentane, discussed 
above. 
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FIG. 8. Fit to experimental PVT data on polystyrene (Ref. 22) (symbols). 
(a) BGY fits to a series of isotherms ranging from 373.65 to 503.65 K (left 
to right), with the highlighted temperatures 422.15,463.45, and 503,65 K. 
(b) Fits to the three isotherms highlighted in (a) using:-BGY; ---LF; 
. . .Pv&.-Lc.-. .-ss. t , 
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FIG. 9. Fits to PVT data on poly(orthomethylstyrene) (Ref. 23); same 
notation as Fig. 8. The isotherms span the range 412.55 to 470.85 K; the 
temperatures highlighted in (a) and featured in (b) are:412.55,441.25, and 
470.85 K. 

Although the data are not shown in Table II we also 
fitted the BGY equation to PVT data for the glassy state of 
the polymers studied. In all cases, J was larger for the melt 
than for the glass of a particular polymer; this can be under- 
stood by recalling that J is proportional to the number of 
freely jointed connected segments per chain. This number 
should be greater for the melt, reflecting the greater flexibil- 
ity of chains above the glass transition. Since the hard-core 
volume of the chain should be independent of whether it is 
the molten or glassy state, Y must therefore decrease in going 
from a melt to a glass, and that is what was found; the prod- 
uct Jv changed less than 5%. 

In all, it would seem that each of the equations of state 
used is capable of providing at least a reasonable fit to fluid 
PVT data. For n-C5 BGY appears to do significantly better 
than either PV or LF. For the polymeric systems all of the 
equations used did a good job. Niess and Stroeks2’ have 
commented recently that two descriptions which appear to 
do equally well at fitting liquid PVT data can differ signifi- 
cantly in other ways, e.g., in predictions regarding phase 
separation behavior in mixtures. Thus, even though the nu- 
merous equations used did an apparently similar job in de- 

(b) 

0.82 0.84 0.88 0.88 
Volume ( Lhole) 

FIG. 10. Fits to PVT data on poly(vinylacetate) (Ref. 24); same notation 
as Fig. 8. The isotherms span the range 308.15 to 373.15 K; the tempera- 
tures highlighted in (a) and featured in (b) are: 323.15,348.15, and 373.15 
K. 
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FIG. Il. A comparison of the predicted (solid line) and experimentally 
determined (filled symbols) thermal expansion coefficient as a function of 
pressure for poly(vinylacetate). 
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scribing the polymeric PVT surface, it remains to be seen 
how they will differ when used to treat mixtures of, for exam- 
ple, polymeric fluids. 

by the America1 Chemical Society. In addition, the authors 
wish to thank D. J. Walsh for supplying PVT data on poly- 
styrene. 

Vi. CONCLUSIONS 

In this work we have extended our studies using the 
BGY integral equation treatment to include the case of a 
compressible pure fluid. We have commented on how well 
the BGY predictions for the athermal fluid (GRM) com- 
pare with lattice Monte Carlo results as well as with the FH 
and LC predictions for the athermal case. In addition, we 
have studied a series of n-alkanes (a selection from n-C4 to 
n-C20) as well as three different polymeric fluids [ polysty- 
rene, poly ( orthomethylst yrene ) , and poly (vinylacetate ) I, 
comparing the BGY fits and predictions with those from 
theories including the LC, LF, PV, and SS treatments. In all 
of these cases the BGY approach does very well, showing 
that it is indeed capable of describing fluid PVT results and 
predicting thermodynamic properties, both for the liquid 
and (where appropriate) gas phases. 

In Sec. IV we refered to continuum Monte Carlo results 
for athermal chains. Dickman and Hall” have pointed out, 
in determining the pressure for such systems, that the lattice 
and continuum results are dramatically different, and that 
the lattice models (such as FH or GRM) do very poorly at 
describing the continuum results.26 Here we have noted the 
excellent agreement between GRM and the lattice Monte 
Carlo results, and then have continued using our lattice 
model to fit experimental data, which means applying a lat- 
tice version of BGY to describe continuum systems. How 
can this be justified? We have seen that the lattice version of 
the equation of state does very well indeed at fitting the con- 
tinuum PVT data. Shall our defense be that “it works?” The 
conclusion might then be that any reasonable form of the 
equation of state with three fitting parameters is sufficient. 
However, the BGY approach must be doing a good job at 
describing the underlying physical behavior, since the fits of 
liquid data lead to accurate predictions on properties of the 
vapor and good estimates of the critical points. Thus, while 
the lattice version of BGY may not be quantitatively correct, 
in the sense that when there are no adjustable parameters it 
does poorly with respect to simulation results for quantities 
such as pressure or the compressibility factor, it must get the 
physics of the system qualitatively correct. Hence it would 
seem that the lattice description is rather robust, and that the 
flexibility afforded by having three parameters makes up the 
difference between being qualitatively and quantitatively 
right. Since we are currently studying the continuum analog 
of this problem using BGY, we will soon be able to report on 
the differences in using the lattice and continuum versions of 
the same theoretical approach. 
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