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Abstract Biological membranes contain a high density of
protein molecules, many of which associate into two-
dimensional microdomains with important physiological
functions. We have used Monte Carlo simulations to
examine the self-association of idealized protein species
in two dimensions. The proteins have defined bond
strengths and bond angles, allowing us to estimate the
size and composition of the aggregates they produce at
equilibrium. With a single species of protein, the extent
of cluster formation and the sizes of individual clusters
both increase in non-linear fashion, showing a ‘‘phase
change’’ with protein concentration and bond strength.
With multiple co-aggregating proteins, we find that the
extent of cluster formation also depends on the relative
proportions of participating species. For some lattice
geometries, a stoichiometric excess of particular species
depresses cluster formation and moreover distorts the
composition of clusters that do form. Our results suggest
that the self-assembly of microdomains might require a
critical level of subunits and that for optimal co-aggre-
gation, proteins should be present in the membrane in
the correct stoichiometric ratios.

Keywords Aggregation Æ Composition Æ Lattice gas Æ
Microdomains Æ Phase change

Introduction

The plasma membrane is a thin hydrophobic sheet
containing about 50% lipid and 50% protein by weight.
Proteins associated with the plasma membrane are
highly heterogeneous in structure and function, and also
differ widely in their location and mobility. Some pro-
teins span the membrane or are associated only with one
or other of its two faces. Some proteins diffuse readily in
the plane of the membrane whereas others are associ-
ated, more or less firmly, with clusters of other proteins.
Protein domains of different sizes and composition, such
as synaptic endplates, cell junctions and receptor pat-
ches, can be held in place by attachments to the cyto-
skeleton beneath the membrane or to structures outside
the cell, such as components of the extracellular matrix.
Adding to this complexity, membranes undergo rapid
changes as proteins are removed by endocytosis, added
to the membrane by exocytosis, or modified as a result
of signals received by the cell (Alberts et al. 2004).

Our interest in the question of membrane dynamics
arose in the context of bacterial chemotaxis. Thousands
of transmembrane receptors and associated signalling
molecules, CheW and CheA, form a cluster, or plaque,
usually at one end of an Escherichia coli cell (Bren and
Eisenbach 2000). This cluster appears to form by the
diffusion-limited association of its component proteins,
since the deletion of individual components causes the
other proteins to become delocalized (Maddock and
Shapiro 1993). Furthermore, overexpression of either
CheA or CheW to levels much higher than those found
in a wild-type cell leads to a loss of chemotactic sig-
nalling, a result suggestive of the disruption of a lattice
of defined stoichiometry (Bray and Bourret 1995; Liu
and Parkinson 1989). Similar effects have been seen in
other cell functions that depend on the formation of
protein complexes of defined composition (Papp et al.
2003).

In order to examine this question further, we have
now written computer programs that simulate the
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diffusion and association of proteins in a two-dimen-
sional membrane. The program is based on a simple
random walk of protein molecules over a fixed lattice. A
Metropolis algorithm is used to determine which states
are of lower free energy and therefore favoured (specif-
ically, states with large numbers of protein–protein
bonds). We used this program to examine the formation
of two-dimensional clusters in a defined area of mem-
brane containing proteins of different densities, bond
strengths and bond geometries. In particular, we mea-
sured the numbers and sizes of clusters formed at equi-
librium and, in the case of mixed structures, the average
composition of the clusters formed. Evidently, this
model is only a crude approximation to a real membrane
and can address only a limited number of questions.
However, the results highlight features that we believe
must be important for normal cellular processes.

Methods

Each simulation represents a small section of lipid membrane as a
two-dimensional integer grid. This can have a trigonal, square, or
hexagonal (honeycomb) geometry, depending on the bonding
geometry of the protein monomers. Each position in a trigonal
lattice has six neighbours spaced at 60� intervals; each position in a
square lattice has four neighbours spaced at 90�; each position in a
honeycomb lattice has three neighbours spaced at 120�. Lattice
points are indexed with periodic (toroidal) coordinates so that a
protein molecule leaving one side of the grid automatically re-
emerges on the opposite side. The latter tactic allows us to avoid
the issue of what happens when a protein collides with a boundary
and keeps the protein density constant throughout the simulation.

Each type of protein is defined by a class, or template, which
contains the protein name and the number and arrangement of its
binding sites. Multiple monomers are created using this template
and distributed at random positions and with random orientations
over the grid. Bonds form between binding sites on adjacent
monomers and have a characteristic strength, depending on the
bonding partners, defined in kilocalories per mole.

The simulation uses the Metropolis Monte Carlo algorithm
(Metropolis et al. 1953) to explore different states of the system
tending towards an ensemble of states of lowest free energy
characteristic of the system at equilibrium. Briefly, an iteration
consists of a trial move in which a randomly selected monomer
takes a step to one of its (randomly chosen) adjacent positions. If
the new position is already occupied, then the move is cancelled
and the monomer remains in its initial location. As discussed
elsewhere (Lamb 1994), this simple algorithm causes the protein
molecule to perform a random walk over the surface. We con-
firmed that the movements of protein molecules in our simulation
(under non-crowded, non-associating conditions) did in fact con-
form to two-dimensional diffusion. For a given set of conditions,
the distance traversed from the starting point was found to follow
the power law relationship <x2>=4Dt, where D is the diffusion
coefficient.

For a system containing proteins that can bind to each other,
the decision to accept the move is based on the effect it has on the
number and strength of intermolecular bonds. At each iteration, a
monomer moves to a new position and undergoes a rotation in
which its binding sites are shifted by one position (either clockwise
or anticlockwise). If in the new position the total energy of its
bonds is less than or equal to the energy in its previous position, the
move is accepted. Otherwise, the move is accepted with a proba-
bility equal to exp()E/kT), where E is the energy difference, k is
the Boltzmann constant and T is the temperature in degrees kelvin.
The number of iterations required to reach equilibrium varies,

depending on the number of molecules in the simulation and the
size of the lattice, but was usually within the range of 107–109

iterations for our simulations.
The program records the distribution of protein molecules in

the lattice at every time step and allows it to be displayed graphi-
cally. Selected time frames can also be analysed within the program
to determine the number, sizes and (where appropriate) the com-
position of each cluster of proteins.

Results

We ran a series of simulations to explore the ability of
individual protein species, with sterically defined binding
sites, to produce two-dimensional aggregates. Most of
this work was performed with proteins on a trigonal
lattice, each protein having six equally spaced homo-
philic binding sites, but similar results were also ob-
tained with proteins on square and honeycomb lattices.
Figure 1 shows the progress of a typical simulation.
Proteins were initially distributed at random positions
(Fig. 1a), but became associated as their independent
random movements brought them into contact. After
106 steps (Fig. 1b), many small aggregates had formed.
As the simulation continued, more clusters were formed
which eventually, after 108 steps, condensed to a few
large clusters (Fig. 1c). We assessed the extent of
aggregation by counting the number of protein–protein
bonds. Other measurements were also made, such as the
mean cluster size, the size of the largest cluster, or the
number of monomeric or unassociated protein mole-
cules. However, the bond count was the most useful
variable for most purposes, being closely associated with
the free energy of the system.

Because of incipient fluctuations, it was impossible to
tell by inspection when the system had reached a true
equilibrium state. Several strategies were adopted to
examine this question. One method was to run the
simulation ‘‘in reverse’’, starting with a single large
aggregate containing all protein molecules. The aggre-
gate was then allowed to disperse through the action of
Brownian motion and end points of the normal and
‘‘reverse’’ simulations were compared. A second strategy
employed simulated annealing to accelerate the ap-
proach to equilibrium. In this method the simulation
starts at a high temperature, which is then lowered
stepwise. Simulated annealing helps break up re-
calcitrant configurations that are locked in unproductive
aggregates (Kirkpatrick et al. 1983). Both of the above
methods confirmed that the state reached after 108

iterations (Fig. 1c) was indeed close to the true
(dynamic) equilibrium.

We then performed a series of simulations in which
the equilibrium state was measured for different starting
parameters, such as the starting density of protein
molecules (number of molecules in the lattice) and the
strength of the protein–protein bonds. Changing the
temperature of the simulation was an equivalent proce-
dure to changing bond strength since this value is rela-
tive to kT. A plot of equilibrium state against
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progressively increasing bond strength is shown in Fig. 2
for three kinds of lattice. It may be seen that very few

protein bonds form at low bond strengths (or high
temperatures), but their number rises abruptly in a non-
linear fashion. Equivalent results (albeit with a greater
degree of noise) were obtained by measuring the size of
the largest aggregate formed. Simulations in which the
starting concentration of protein monomers was in-
creased incrementally (Fig. 3) also displayed a similar,
although less dramatic, threshold. The existence of this
‘‘phase change’’, in which the system changes abruptly
from a diffuse to a more highly condensed state, is
consistent with the behaviour of our simulation as a
lattice gas, as discussed below.

Having examined the behaviour of a single protein
species, we turned to systems containing two or more
types of protein able to form heterophilic protein–pro-
tein bonds. In the T2A3 system, one protein, designated
T, had three binding sites, spaced at 120�, each with
affinity for the second protein A. Protein A had two
equivalent binding sites with affinity for protein T, ori-
ented at 180� to each other. This configuration is loosely
based on the lattice of gephyrin molecules at inhibitory
synapses (Choquet and Triller 2003). Spontaneous
aggregation of T and A should then generate a lattice of

Fig. 1a–c Typical aggregation sequence for a single protein species.
Each protein molecule had six symmetrically positioned homo-
philic (that is, self-binding) sites. Diffusion in two dimensions was
simulated by the algorithm described in the text. (a) 820 copies of
the protein monomer were randomly distributed on a trigonal
lattice with 128·128 points. Assuming a unit spacing of 5 nm, the
total area represents approximately 1000 nm2 of lipid membrane.
(b) After 106 iterations, small aggregates of protein molecules had
formed, with a mean cluster size of 6.78. The total number of
protein–protein bonds formed at this stage was 985. (c) After 108

iterations the number of bonds formed was 1752 and the average
cluster size was 29.42 monomers

Fig. 2a–c Effect of bond energy. Numbers of protein–protein
bonds reached at equilibrium are plotted as a function of bond
energy. Simulations were performed on a lattice of 128·128 points
populated by 820 protein monomers (5% occupancy). (a) Trigonal
lattice (six binding sites/molecule). (b) Square lattice (four binding
sites per molecule). (c) Honeycomb lattice (three biding sites per
molecules). Simulations were run for 108 iterations at each value of
the bond strength
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alternating T and A with a characteristic composition
(for an infinitely large lattice) of T2A3.

The starting proteins were placed at random posi-
tions on a 128·128 trigonal lattice with 351 copies of T
and 469 copies of A. Diffusion was simulated as before,
by allowing individual molecules to step onto vacant
adjacent positions. A and T molecules were able to form
bonds if they occupied adjacent lattice points and if their
binding sites were correctly oriented. In this manner,
clusters of molecules containing T and A were estab-
lished. The time-course of aggregation had similar fea-
tures to that already shown for a single protein species,
with a steep sigmoidal rise occurring at some charac-
teristic bond strength or density of proteins.

We were interested to explore the consequences of
changing the ratio of the two proteins, T and A. The
intrinsic bonding ratio of these two proteins, specified by
their binding sites, is 2T:3A, and we observed that the
large aggregates formed from this input ratio indeed had
the correct composition (Fig. 4). However, what would
happen if the starting mixture contained a different ra-
tio, with either T or A present in excess over that re-
quired for stoichiometric binding? We examined this
question by running a series of simulations of the T2A3

system in which the total number of protein monomers

was kept constant and the proportion of T and A mol-
ecules was varied. We found that in this case the extent
of aggregation at equilibrium, measured either by the
numbers of bonds formed or the size of the largest
cluster, was sensitive to the input ratio. A maximum
extent of aggregation was reached at a specific stoichi-
ometric ratio but decreased on either side of this opti-
mum (Fig. 5a). Similar results were obtained by keeping
T constant and varying A; in other words, it appears
that an excess of either T or A above the amount re-
quired for stoichiometry decreases aggregation. Similar
results were obtained for other two-dimensional lattices,
such as the ab2 lattice (Fig. 5b). The basis of the sup-
pression of aggregation became apparent when we in-
spected aggregates of different sizes in the T2A3 system.
Small aggregates produced if T was in excess had mostly
T on their perimeter, whereas the opposite was true if A
was in excess (Fig. 6). Evidently, a bias towards either T
or A on the perimeter of a cluster will have the largest
effect on overall composition when clusters are small. In
a series of tests in which the starting ratio of A and T
was changed and the composition of all aggregates
examined, we found that the composition of small
aggregates was indeed very sensitive to the input ratio
(Fig. 7). As the size of the aggregates increased, how-
ever, their composition came closer to the stoichiometric
endpoint of 0.66 T to 1 A.

Discussion

The program we developed in this work resembles the
‘‘lattice gas’’ models of statistical physics in which a
large number of particles representing the molecules of a
gas move around on the vertices of a lattice (Newman
and Barkema 1999). Lattice gas models are simpler to

Fig. 3 Effect of monomer concentration. Numbers of protein–
protein bonds reached at equilibrium are plotted as a function of
the starting concentration of monomers. Simulations were per-
formed as described for Fig. 2

Fig. 4 Large clusters formed by the co-aggregation of two proteins.
Proteins T and A form a T2A3 cluster on a trigonal lattice. Proteins
a and b form an ab2 cluster on a square lattice
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deal with mathematically than models in which particles
can take any position in space, and are less realistic for
this reason. However, they have been found to give
valuable insight into the general behaviour of real gases.
In particular, the equilibrium states reached by a lattice
gas should be an accurate representation of the states of
the real system, since they depend only on the interac-
tion energies between the molecules.

Similarly, in our simulations we have not attempted
to take accurate account of the physical sizes of the
protein molecules or of their true rates of diffusion. As a
rough guide, lattice points will be separated by 5 nm,
since this is a typical packing distance of proteins in an
aggregate. A trigonal lattice with 128·128 points (the
value in most of our simulations) therefore represents an
area of roughly 3.5·105 nm2 (0.35 lm2) of membrane.
Time intervals between iterations, which depend on the
number of molecules in a simulation, were chosen to
give diffusion rates around 5·10)9 cm2 s)1, which cor-
responds to values measured for rhodopsin (Poo and
Cone 1974).

In broad terms, the simulations met our expectations
for a system of proteins diffusing in a lipid bilayer. If
individual monomers were tracked in a simulation with
zero binding energy, they moved in random walks that

carried them a distance proportional to the square root
of time, as expected for a diffusing particle. If interac-
tions between monomers were allowed, the extent of
cluster formation (measured by the number and size of
aggregates or the numbers of bonds formed) increased
with time to a plateau value. The plateau values had the

Fig. 5 How the extent of co-aggregation of two proteins is affected
by the relative concentrations. Numbers of protein–protein bonds
reached at equilibrium are plotted against the input ratio of
monomers for the T2A3 and ab2 systems (see Fig. 4). In both cases
the total number of monomers in the simulation was fixed

Fig. 6a–c Equilibrium states for different input ratios. The T2A3

system was sampled after 108 iterations. (a) Starting ratio
T/A=0.33, bonds formed=594, mean cluster size=9.3 monomers.
(b) Starting ratio T/A=0.75, bonds formed=851, mean
cluster size=35 monomers. (c) Starting ratio T/A=1.5, bonds
formed=646, mean cluster size=8.6 monomers. Note that each
simulation used the samenumber of proteinmonomers (T+A=820)
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properties expected of steady-state equilibria, displaying
fluctuations around a mean value but without a consis-
tent increase or decrease over time. Tests such as run-
ning the simulation in reverse and simulated annealing
confirmed that plateau values were indeed close to the
thermodynamic equilibrium.

It is important to recognize that our lattice gas
treatment of membrane proteins ignores many impor-
tant factors. Interactions with lipid molecules, for
example, can lead to dramatic changes in the location of
proteins. The thickness of the lipid bilayer and its cur-
vature, as well as its local composition and the dynamic
formation of lipid domains, can all influence protein
aggregation in a real cell (Gil et al. 1998). Membrane
proteins can be tethered to the cell cortex inside the cell,
to extracellular matrix molecules outside the cell, or to
proteins on the surface of another cell (Alberts et al.
2004). In some cells, such as epithelial cells, diffusion
barriers restrict selected proteins to a particular region.
Other membrane proteins are in a dynamic rather than
an equilibrium state, being rapidly inserted into mem-
branes and removed in response to external signals, as
seen for example during T cell recognition (Davis et al.
2003). Each of these issues is a complex subject in its
own right and none is addressed in our simple analysis.
Nevertheless, just as is it important to measure diffusion
coefficients of membrane proteins under defined condi-
tions, we believe it is essential to understand their
aggregation behaviour in an idealized environment free
of extraneous factors. The phenomena revealed in our
study will always be present, even if they are masked by
other factors in specific situations.

The extent of aggregation was increased by high
concentrations of monomers and large bonding energies
but decreased by elevated temperatures. In all of the
systems we examined there was an abrupt transition in
the extent of clustering with changes in bond strength,
concentration or temperature (see Figs. 2 and 3).
Transitions of this kind are commonly seen in lattice
gases and correspond to the ‘‘phase change’’ occurring

when molecules of a gas condense to a liquid or solid.
Moreover, fundamental thermodynamic considerations
of the self-assembly of amphiphilic molecules, such as
lipids in two dimensions, predict a critical monomer
concentration (CMC) below which no aggregation oc-
curs, but above which monomers will assemble into
large aggregates (Israelachvili 1992).

Our results suggest that an analogous transition will
occur in the assembly of membrane proteins into
aggregates. One possible example of such a phenomenon
is seen in the bacteriophage-encoded proteins called
holins. These are small membrane proteins that accu-
mulate in the bacterial membrane until, at a specific time
characteristic of each holin gene, the membrane under-
goes lysis and the cell bursts (Wang et al. 2000). It has
recently been suggested that the holins accumulate until
they reach a critical level and then assemble into a
complex that triggers lysis (Gründling et al. 2001).

The inclusion of two protein species able to form two-
dimensional aggregates of mixed composition revealed
other phenomena of interest. If the starting ratio of the
two proteins was fixed, then the extent of aggregation
increased with concentration and bond strength and
showed an abrupt phase transition, as for a single pro-
tein. However, if the total protein concentration was
fixed and the ratio of the two species allowed to vary,
then this also affected the final extent of aggregation.
Maximum aggregation, measured by numbers of bonds
or size of clusters, was reached when the two proteins
were in a specific ratio. If one or other protein was
present in excess of this value, then the extent of
aggregation was diminished.

It is of interest to note that the input ratio of
proteins giving the greatest clustering is not identical to
the final ratio of these proteins in an extended lattice.
For example, the maximum bond number for the
T+A system was achieved at an input T/A ratio of
about 0.75. However, from simple geometry we know
that the stoichiometry of an infinitely extended lattice
of the same aggregate is 0.67. This difference arises
because (1) the proteins form hexagons wherever they
can, since these are more stable, and (2) the perimeter
of a cluster formed entirely of hexagons contains equal
umbers of T and A and therefore has a T/A ratio of
1.0. Hence, the stoichiometric ratio of subunits in the
interior of a cluster, which is indeed 0.67, will be in-
creased by the higher proportion of T proteins on the
cluster perimeter. The magnitude of this bias will de-
pend on the size of the cluster and the irregularity of
its contour.

The reduction of aggregation noted in our study
resembles the suppression of complex formation by
unbalanced monomers sometimes called the ‘‘prozone’’
effect (Bray and Lay 1997). Examples include the sup-
pression of dynactin formation by an excess of the
50 kD subunit (Escheverri et al. 1996); suppression of
the formation of a yeast myosin V by an excess of either
its heavy or light chains (Stevens and Davis 1998); and
the inhibition of microtubule formation by an excess of

Fig. 7 Plot of composition versus aggregate size for different input
ratios. Simulations of the T2A3 system were run with the same total
number of protein molecules but with different ratios of T and A.
Each simulation was allowed to run to equilibrium and then the
composition of different size aggregates was calculated
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b-tubulin (Abruzzi et al. 2002). We are not aware that
similar phenomena have been seen in two-dimensional
membrane complexes, but the results of our simulations
suggest that it should occur. In order to produce large
protein clusters of defined composition, the interacting
components should be present at the correct stoichi-
ometric ratios.

Perhaps the most intriguing result arising from our
simulations is that the composition of membrane clus-
ters is also malleable. If one component is present in
excess at the start of the simulation, then the clusters
that form have a bias in composition toward that com-
ponent. The basis for this bias is readily understood if
we examine specific clusters. Clusters made with an ex-
cess of protein A tend to have molecules of A on their
perimeter. This can distort the overall composition,
especially if the cluster is relatively small. Since, as al-
ready noted, an excess of A also has the effect of
reducing the size and number of clusters, the effect of
input ratios on composition can be significant. One
possible situation in which this could arise is if a mem-
brane complex is reconstituted in vitro. A common
experimental strategy is to incubate membrane frag-
ments enriched in a specific protein with other purified
proteins in order to form a functional membrane com-
plex, such as that associated with bacterial chemotaxis
(Levit et al. 2002). It is obvious from our simulations
that complexes obtained by this procedure could differ
significantly in composition from the actual complexes
in the living cell.
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