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Different isogenic cells exhibit different responses to the same

extracellular signals. Several authors assumed that this varia-

tion arose from stochastic signalling noise with the implication

that single eukaryotic cells could not detect their surroundings

accurately, but work by us and others has shown that the varia-

tion is dominated instead by persistent cell-to-cell differences.

Here, we analysed previously published data to quantify the

sources of variation in pheromone-induced gene expression in

Saccharomyces cerevisiae. We found that 91% of response varia-

tion was due to stable cell-to-cell differences, 8% from experi-

mental measurement error, and 1% from signalling noise and

expression noise. Low noise enabled precise signalling; indi-

vidual cells could transmit over 3 bits of information through

the pheromone response system and so respond differently to

eight different pheromone concentrations. Additionally, if in-

dividual cells could reference their responses against constitu-

tively expressed proteins, then cells could determine absolute

pheromone concentrations with 2 bits of accuracy. These re-

sults help explain how individual yeast cells can accurately

sense and respond to different extracellular pheromone con-

centrations.

1. Introduction
Cell signalling systems sense extracellular conditions and trans-

mit information about them into the cell. The cell then uses the

information to make decisions, such as whether to grow, undergo

apoptosis, or differentiate. Incorrect decisions can lead to undesir-

able outcomes, so onewould reasonably expect that cell signalling

systems would have evolved to transmit information accurately

[1,2]. Indeed, yeast cells (Saccharomyces cerevisiae) reliably select

the nearbymating partner that produces the strongest pheromone

signal [3], which demonstrates that they accurately sense, transmit

and interpret information about external pheromone concentra-

tions.

© 2025 The Author(s). Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
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However, the amount of information transmitted through cell signalling systems has not been quan-

tified until recently, when several groups of researchers applied agonists to isogenic populations of

mammalian cells andmeasured the responses by individual cells [4–7]. They foundwide variation,which

they quantified to show that the channel capacity for a single cell, defined as the maximum information

that can be discerned about the stimulus level from one cell’s response [8–17], was only about one bit.

This number corresponds to two states, which implies that a cell’s response was adequate for determin-

ing whether the agonist was present or not, but could not give further detail about its concentration.

These observations led to suggestions that single cells could not sense the extracellular environment pre-

cisely, so populations of cells might need to combine information frommultiple sources to make correct

decisions [4,18,19].

These observations are also consistent with a different interpretation, in which variable responses

from single cells do not arise from noisy signalling within cells but from pre-existing differences be-

tween cells [20–24]. In this interpretation, which agrees with substantial prior work by ourselves and

others [25–29], individual cells behave differently from each other, but each is able to distinguish between

different external conditions reasonably precisely by itself. This view would explain how individual

cells might achieve accurate responses from single inputs. It is also consistent with the possibility that

populations of cells could combine information frommultiple sources tomake even better decisions [23].

The work presented here extends this latter view. We infer channel capacity from single-cell time

series data in S. cerevisiae using a new data analysis approach. We find, in agreement with prior re-

ports, that the measured channel capacity for the response of a randomly chosen single cell is only about

one bit. However, quantification of the signalling noise within individual cells reveals that intracellular

channel capacities are often over 3 bits. We also quantify the relative contributions of signalling system

noise, gene expression noise, and pre-existing cell-to-cell variation in signalling and gene expression. We

find that, in our data, cell-to-cell variation represents 91% of the total variation, experimental measure-

ment error represents 8% of the total variation and noise that originated within the signalling pathway

is under 1%. Together, these results indicate that yeast cells are able to transmit signals with good

fidelity.

2. Methods
2.1. Experimental data
Haploid yeast cells have two mating types, MATa and MAT�. The MAT� cells secrete �-factor mating

pheromone, which the MATa cells detect and may act upon, which can then lead to mating. The sig-

nalling system within the MATa cells (figure 1A), called the yeast pheromone response system (PRS),

transmits information about �-factor binding at cell-surface receptors to the cell nucleus. It is a prototyp-
ical G-protein signalling system, bears close homology to many mammalian signalling systems and has

been studied thoroughly by many researchers, including ourselves [1,25,31–34]. See reviews [30,35–37]

for details about this system.

Once �-factor binding information reaches the cell nucleus, it induces the expression of several genes

that initiate progress toward mating. In addition, the cells that we investigated were engineered to ex-

press yellow fluorescent protein (YFP) from a pheromone-responsive promoter (PPRM1) and either red or

cyan fluorescent protein (RFP or CFP) from a constitutive promoter (PACT1) [1,25] (electronic supplemen-

tary materials, section 1 (SM-1) presents genetic and experimental details). These reporter proteins were

not intended to represent specific native yeast proteins but were simply used to enable the quantification

of pheromone-induced and constitutive expression rates. YFP and CFP maturation half-life times were

found to be about 39 and 49 min, respectively, while degradation was negligible [38].

We used two previously published data sets in our analysis, from essentially identical cells. The first,

from [1] and shown in figure 1B, represents the dose–response function for the PRS, measured 3 h after

pheromone stimulation. It was collected using flow cytometry in which each cell’s response was com-

puted as the ratio of YFP (pheromone-induced) fluorescence to RFP (constitutive) fluorescence in the

same cell. Defining the response as this ratio automatically corrected for brightness variation in the ex-

citing light source. It also corrected for cell-to-cell variation in overall protein expression rates (described

elsewhere [25] and below as ‘expression capacity’), in order for the response to accurately represent the

relative level of pheromone induction. These values were averaged over many cells.

We required a dose-response function that was defined everywhere rather than only at discrete

pheromone concentrations, so we based our analysis on a Hill function that we had fit to these
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Figure 1. (A) The yeast PRS in mating type a cells. Pheromone (�-factor, in red) binds to G-protein coupled receptors (Ste2), causing
dissociation of heterotrimeric G-proteins (Gpa1/Ste18/Ste4), which recruits Ste5 scaffold proteins to the cell membrane and induces
signalling through a MAP kinase cascade (Ste11, Ste7, Fus3 and Kss1); the MAP kinases activate Ste12 transcription factors which then
promote expression of pheromone-responsive genes, in this case by binding to the PRM1 promoter which then leads to YFP expression
[30]. Meanwhile, constitutive expression at the ACT1 promoter leads to constant RFP or CFP expression (only CFP is shown here). The
pheromone concentration is the signal, YFP fluorescence is the pheromone-induced response, and CFP fluorescence is the constitutive
response. (B) Dose-response curve for the PRS, measured 3 h after stimulation. Points represent experimental data from [1] and the line
represents a Hill function fit to the data from equation (2.1) and [31]. Points and fit were scaled to approach a maximum of 1.

experimental data [31] rather than the raw data themselves. This fit is the four-parameter Hill

function

r̄(s) = B + A
sN

EN + sN
(2.1)

where r̄(s) is the mean response over all cells as a function of the signal, s is the signal or pheromone con-

centration, B is the baseline,A is the Hill function amplitude, E is the EC50 (the signal value that produces

half-maximal response), andN is theHill coefficient.We scaled the experimental data so that the fitted re-

sponse would asymptotically approach a maximum value of 100% (i.e. A + B= 1.0). We also constrained

the fit so that the baseline would equal the response that arose with no pheromone addition, which was

4.7% of the maximal response. Best fit values are B= 0.047, A= 0.953, E= 2.67 nM and N = 1.24. This fit
has a root mean square (r.m.s.) error of 0.18%, showing excellent agreement with the data (figure 1B).

These experimental data, and the Hill function fit to them, represent the dose–response curve for the

cell population, and not for individual cells. Such a population-average dose–response curve is neces-

sarily less steep than the dose–response curves for the individual cells due to what has been called the

‘response diversity effect’ [23]. It arises from the fact that the dose–response curves for individual cells

have different EC50 values, which then causes the average of these curves to exhibit a more gradual tran-

sition between low and high responses. We do not have single-cell dose–response curves, so did not

correct for this effect. We discuss it more below.

The second dataset, described in [25,39], consists of inverted epifluorescence microscope images of

single-cell responses to pheromone stimulation. Figure 2 shows a set of example images. These cells

were arrested in either the G1 or G2 cell cycle states, using a kinase inhibitor that acted on a mutant

Cdc28 cell cycle kinase (cdc28-as2). They were also exposed to one of 5 time-invariant concentrations of

pheromone. At each of these concentrations, the image data capture the YFP and CFP fluorescence in-

tensities of roughly 100 individual yeast cells at 14 equally spaced time points after pheromone addition.

We minimally filtered the image data to remove entries for dead cells, badly segmented cells and outlier

measurements as recommended by Bush et al. [39] (SM-2 describes this filtering). We then integrated the

images over the cell areas to determine YFP and CFP fluorescence intensities.

Figure 3 shows the resulting YFP and CFP fluorescence intensities, for each pheromone dose level,

where each line in a graph represents fluorescence from a single cell. The graphs in the left column show

that YFP fluorescence, from pheromone-responsive promoters, stayed low initially and then increased
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Figure 2. Microscope image ofYFP fluorescence from several cells at 0, 15, 45 and 90min after measurement began (which was 10min
after pheromone addition). Note that the brightest cells at 90 min were also the brightest cells earlier, showing temporally consistent
variation. Copied with permission from [25].

nearly linearly over time for at least 3 h. Neither pheromone nor intracellular YFP was degraded signifi-

cantly during these experiments, implying that the PRS within each cell must have signalled at a nearly

constant rate [25]. The graphs in the right column show that the CFP fluorescence, from constitutively ex-

pressed promoters in the same cells, did not respond to pheromone stimulation but simply increased due

to protein accumulation. The black lines in the bottom graphs highlight the YFP and CFP fluorescences

for a randomly chosen cell.

2.2. Theory background
Information theory is an appropriate approach for quantifying biological signalling fidelity because it di-

rectly addresses a critical question, which is howmuch information can actually be transmitted through

the signalling pathway [8–17]. It is quantified as mutual information, which represents how much in-

formation is shared between the signal and response. Equivalently, the mutual information represents

howmuch one can learn about the signal when being told what the response is. For simplicity, we focus

on a single snapshot of the system, meaning that the signal is simply the external pheromone concentra-

tion, which is time-invariant, and the response is the amount of YFP fluorescence from a single cell at a

particular moment (note that this snapshot necessarily includes some intrinsic signal averaging because

fluorescent proteins do not mature at a fixed time after their expression, but with a spread of times [38]).

The mutual information is given by the equation

I(s; r) = ∫
s

∫
r

p(r|s)p(s) log
2

p(r|s)
p(r) drds, (2.2)

where p(s) is the signal distribution, meaning the probability that the input signal has the given value

and p(r|s) is the conditional probability of observing response r for given signal s. The p(r) function is the
response distribution,which represents the probability of observing the given responsewhile integrating

over all input signals,

p(r) = ∫
s

p(r|s)p(s)ds. (2.3)

The mutual information is quantified in bits (due to the base 2 logarithm in equation (2.2)), with the in-

terpretation that 2I(s;r) represents the number of signal values that can be reliably distinguished from a

given response.

The natural signal distribution, here meaning the pheromone concentrations that yeast cells are actu-

ally exposed to in their natural environments, is unknown. To address this, we follow the convention by

optimizing p(s) to yield the maximum possible mutual information [9], which is then called the channel

capacity. The channel capacity represents the upper limit to the amount of information that is actually

transmitted in natural situations. We performed this optimization numerically with the Blahut–Arimoto

algorithm [9,40], an iterative approach that optimizes p(s), using a known p(r|s) function, in order to find
themaximumpossiblemutual information, I(s; r). We describe our implementation of it in theAppendix.

A separate approach for investigating signalling fidelity looks at where the variation comes from [41].

This approach was first used by Elowitz et al. [42], who defined ‘intrinsic noise’ as variation that arises

from the discrete nature of the gene expression process and ‘extrinsic noise’ as variation that is global to
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Figure 3. Left: YFP fluorescence from individual cells over time after pheromone addition, quantified in arbitrary fluorescence units
(F.U.). Right: CFP fluorescence, expressed from a constitutive promoter, from the same cells. Data for these panels were measured for
[25] and made publically available in [39].

a single cell but varies from one cell to another (this latter variation may be time-dependent). In Colman-

Lerner et al. [25], we extended this approach to variation in signalling-induced gene expression in S.

cerevisiae by decomposing the multiple contributions of extrinsic noise. In that work, we modelled the

fluorescence of cell i at time �T after pheromone stimulation as

yi = Pi�T × Ei, (2.4)

where Pi is the ‘power’ of the signalling pathway, which is a function of both the pheromone input con-

centration and the ability of the pathway to transmit signals, and Ei is the ‘power’ of the cell’s gene

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

30
 A

pr
il 

20
25

 



6
royalsocietypublishing.org/journal/rsos

R.Soc.OpenSci.
12:

241025
.............................................................................................................

expression system. These two power terms are subdivided into values that are consistent over time for

a single cell but might vary between individual cells and values that vary stochastically over time,

Pi = Li + �i
Ei =Gi + i.

(2.5)

Here, Li is called the ‘pathway capacity’, �i is the ‘pathway noise’, Gi is the ‘expression capacity’ and i
is the ‘expression noise’. The Li, �i and Gi terms quantify different sources of ‘extrinsic noise’, while i
is the same ‘intrinsic noise’ that was defined in [42]. Note that references to ‘cell-to-cell variation’ in the

present work refer to temporally stable differences, meaning the combination of the Li and Gi terms.

The total YFP fluorescence variation for a population of cells arises from variation in each of these

terms. Using � as the coefficient of variation, defined as the ratio of the standard deviation (s.d.) to the

mean, the total variation is

�2(y) = �2(L) + �2(�) + �2(G) + �2() + 2�(L,G)�(L)�(G), (2.6)

where terms within parentheses indicate the varying components. The derivation of this equation is

described in detail in the electronic supplementary material to [25]. In brief, the squared coefficient of

variation for a product of two independent random variables, here Pi × Ei, is the sum of their squared

coefficients of variation. Also, the variance of the sum of two independent random variables, here Li + �i
andGi + i, is the sum of their variances; after some algebraicmanipulation, and the assumptions that the

mean values of �i and i equal zero, these sums also become sums of squared coefficients of variation.

Together, these yield the first four terms of equation (2.6). The final term in the equation accounts for

correlations between the pathway capacity, L, and the expression capacity, G; we assumed previously

that this term can be ignored [25], and do so here as well.

3. Results
3.1. Population channel capacity is 1.35 bits
We quantified the signalling channel capacity in three ways (analyses were performed using Mathe-

matica; source files are in electronic supplementary material). The first, shown with yellow shading in

figure 4, evaluates the total observed variation in response among the cells that comprise the population.

This allows a meaningful comparison with prior results [4–7].

From the single-cell data for YFP fluorescence that are shown in the left column of figure 3 and il-

lustrated in figure 4A, we computed the mean and standard deviation YFP fluorescence across the cell

population at each time point and pheromone dose (14 time points × 5 doses = 70 data points). Defining

y(s, i, t) as the YFP fluorescence value for pheromone level s, cell number i, and time point number t, these

population mean and population standard deviations are, respectively

�(s, t) = ⟨y(s, i, t)⟩i (3.1)

�pop.(s, t) =
√
⟨[y(s, i, t) − �(s, t)]2⟩i. (3.2)

Angle brackets denote a mean over the variable that is listed in the subscript.

A scatter plot of these results, shownwith yellow points in figure 4E, shows a linear relationship. This

implies that the coefficient of variation, �, is constant between the mean responses of the cell population

and the variation across the population, independent of both pheromone dose and exposure time (here,

�pop. = 0.466). The linear relationship agrees with prior experiments that investigated high-abundance

proteins and was shown to be the expected outcome in cases where variation is dominated by extrinsic

noise [25,43,44] (supposing only cell-to-cell variation, the outputs of a collection of cells would all scale

to higher or lower values together when the cells are induced to express proteins at different rates, so

the population standard deviations and means would also scale together). We also computed mean and

standard deviationCFPfluorescence values in the samemanner, shown in the samefigurewith the upper

row of cyan points, and found the same linear relationship and a nearly identical coefficient of variation,

nowwith �C,pop. = 0.443. This similarity is consistent with the variation in both YFP and CFP fluorescence

arising primarily from variation in gene expression capacity [25], which is a cell-wide property. Both �
values are comparable to values found previously, which range from about 0.2 to about 0.7 [5,25,43].
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Figure 4. Channel capacity computationmethod. (A) Filtered single-cell YFP fluorescence data, where each line represents fluorescence
from a single cell over time; points represent y(s, i, t). A representative cell is shown here and in the two following panels in black.
Each layer represents a different pheromone dose. (B) The same data, but with the population mean (all cells at a given time point and
pheromone dose, equation (3.1)) fluorescence values subtracted. (C) The normalized single-cell data, in which fluorescence difference
values were divided by the population standard deviation; points represent ỹ(s, i, t) from equation (3.3). (D) Distribution of normalized
fluorescence values from panel C. The line is a best fit using a sum of two Gaussians. (E) Correlation between mean and s.d. values for
the cell population in yellow equations (3.1) and (3.2) and for an average single cell in green equations (3.1) and (3.7). Cyan points rep-
resent CFP (constitutive) fluorescence. Each point represents a single time point and pheromone concentration. Black lines are best fits
to the yellow or green points and were constrained to intersect the origin. The red line represents only signalling and expression varia-
tion, from the fit presented in equation (3.9). (F) Distribution of normalized fluorescence values about the normalized single-cell mean
values, scaled with the single-cell s.d.; this is ̃̃y(s, i, t) from equation (3.8). The line is a best fit with a single Gaussian. (G) Signal–re-
sponse–variation (SRV) diagram for the cell population. Shading represents the conditional response probability, p(r|s), the solid line
represents themean of this distribution, r(s), and the dashed line represents the s.d. of this distribution. (H) SRV diagram for an average
single cell, showing lower variation and hence greater information transfer; as described in the main text, the variation shown is likely
dominated by experimental fluctuations. (I) SRV diagram for an average single cell, now with variation that only represents signalling
and expression noise; the low variation enables high information transfer.

Next, we normalized the single-cell data by subtracting the population mean at each time point

(figure 4B) and then dividing by the population s.d. at each time point (figure 4C). As an equation, the

normalized data values are

ỹ(s, i, t) =
y(s, i, t) − �(s, t)

�pop.(s, t)
, (3.3)

where the tilde denotes normalization. Each of these normalized fluorescence values represents the

brightness of a particular cell relative to the population as a whole, at any given time point. By con-

struction, these values have a mean of 0 and a s.d. of 1. They exhibit a bimodal distribution, shown in

figure 4D, likely arising from cells that were arrested in either the G1 or G2 cell cycle states [25,45]. While

this figure combines normalized fluorescence values from all five dose values and 14 time points, we

also created separate histograms for each dose value and for each time point; there were no significant

differences between those histograms, or between those and the cumulative one shown in figure 4D.

In addition, the comparable histograms for the normalized CFP fluorescence values exhibited similar

bimodality. These results agree with expectations because cells arrested in G2 have twice as many flu-

orescent reporter genes. While it is possible to design experiments for detecting cell state directly with

microscopymethods [46], those approacheswere not used in the experiments discussed here.As a result,

it is impossible to independently classify particular cells in this study as being in the G1 or G2 phases.
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We combined several of the prior results to compute what we call a ‘signal–response–variation’ (SRV)

diagram, shown in figure 4G. Here, the mean response is the steady-state dose–response curve from

equation (2.1) and figure 1B, the response standard deviation comes from the �pop. value of 0.466 shown

in figure 4E, and the shape of the response distribution at any given pheromone concentration is the

bimodal distribution of YFP fluorescence values shown in figure 4D. Shading in the SRV diagram repre-

sents the probability of observing response r given that the signal is s, which is the conditional response

probability, p(r|s). We computed the channel capacity from this conditional response probability using

equation (2.2) and the Blahut–Arimoto algorithm (appendix).

We found that the channel capacity for the SRV diagram in figure 4G, which represents the total vari-

ation in response among the cells that comprise the population, is 1.35 bits; we call this the ‘population

channel capacity’. This means that knowledge of the YFP fluorescence from any randomly chosen single

cell is sufficient to convey 1.35 bits of information about the pheromone concentration. This corresponds

to about 2.5 different states (21.35), so knowing the YFP fluorescence from one cell can generally indicate

whether pheromone is present or absent but does not give much more detail than that. This low channel

capacity value agrees with the about 1 bit that was found in studies of mammalian cells [4–7].

3.2. Measurement channel capacity is 2.66 bits
To remove the effects of cell-to-cell variation from other sources of variation, we assumed that the differ-

ent slopes of the data traces shown in figures 3 and 4A arose from temporally stable cell-to-cell variation

and that the small ‘wiggles’ within each of these traces represented a combination of single-cell noise

and measurement error. This meant that we could quantify the noise amounts by determining the sizes

of the wiggles.

In principle, thesewiggle sizes could be computed by fitting smooth lines to the YFP fluorescence data

and then computing residuals from them. However, such an approach would introduce artifacts from

the necessarily imperfect fits to the non-linear time dependence. In more detail, fitting a straight line to

each cell’s time-dependent response would introduce artifacts because the responses actually increase

non-linearly, and fitting more complex functions would create a risk of overfitting. Thus, we chose a less

direct but also less biased approach.

Starting with the normalized data (equation (3.3) and figure 4C), we computed the normalized mean

value for each cell over time,

�̃(s, i) = ⟨ỹ(s, i, t)⟩t, (3.4)

and then the difference between each normalized data point and this normalized mean value (see

figure 5),

�ỹ(s, i, t) = ỹ(s, i, t) − �̃(s, i). (3.5)

Then, at each time point and pheromone dose, we computed the rms average of these normalized

variation values over all cells,

�̃exp.(s, t) =
√
⟨�ỹ2(s, i, t)⟩i. (3.6)

The ‘exp.’ subscript indicates that this is for experimental measurement error, as explained below.

Finally, we removed the normalization by multiplying each rms average variation value by the pop-

ulation s.d.,

�exp.(s, t) = �pop.(s, t)�̃exp.(s, t). (3.7)

The result is an average of the variation amount (or wiggle size) over all cells, at each time point and

pheromone dose, in units of YFP fluorescence. Figure 4E shows the results with green dots, plotting these

single-cell standard deviations against the mean fluorescence values. It again shows a linear relationship

between the mean and standard deviations, now with a coefficient of variation equal to �exp. = 0.131.
This single-cell value is smaller than the population one because it does not include cell-to-cell variation.

Analysing the CFP data in the same way produced the lower row of cyan dots in figure 4E and a similar

coefficient of variation of �C,exp. = 0.104.
We also computed the distribution of variation about the respective single-cell mean values. To ac-

count for the fact that brighter cells exhibited more variation (in figure 5, note that the cells near the top
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Figure 5. Normalized single-cell responses, shown for YFP fluorescence after addition of 20 nM pheromone. The black line shows the
normalized response for a particular cell, ỹ(s, i, t) and the blue line shows its normalized mean value, �̃(s, i).

of the graph exhibit more variation than those near the bottom), we divided the normalized variation

values by the normalized single-cell mean values,

̃̃y(s, i, t) =
�ỹ(s, i, t)
�̃(s, i) . (3.8)

This yielded variation values that could be compared between different cells, as well as between dif-

ferent time points and pheromone doses. Figure 4F shows that the variation value distribution agrees

reasonably well with a Gaussian, likely indicating that these variations arise from a sum of many factors

(the Central Limit Theorem shows that a sum of independent random variables approaches a Gaussian

distribution).

Figure 4H shows the SRV diagram for this variation. It assumes (i) that each cell’s dose–response

curve matches that of the population average, given in equation (2.1), (ii) each cell’s variations over time

are Gaussian distributed based on figure 4, and (iii) these variations have a coefficient of variation of

�exp. = 0.131 from figure 4E. From it, we computed a channel capacity of 2.66 bits.

Our original interpretation of this value was that it represented the amount of information transmit-

ted from an average cell’s pheromone receptors to its induced protein expression (corresponding to the

effects of the �i and i terms from equation (2.5)). However, the linear relationship between single-cell s.d.

and mean values that is shown in figure 4E was unexpected because intrinsic noise standard deviations

have been shown to scale as the square root of the mean, not in direct proportion to the mean [42–44].

Moreover, we realized that any noise that arises from a memoryless steady-state process, which is likely

to be a good description for both the signalling pathway and gene expression in this experiment, must

exhibit a square root relationship between the mean response and the standard deviation for a reporter

that accumulates over time. This is because this response represents the sum of independent and identi-

cally distributed randomvalues, and the standard deviation of such a sum always increases as the square

root of the value (from the Central Limit Theorem).

We looked for the expected square root dependence by replotting figure 4Ewith log–log scales, which

is shown in figure 6A. Indeed, this graph shows a square root relationship for the single-cell data points

that represent low YFP expression (arising from low pheromone doses and/or short times after stimula-

tion), and the previously observed linear dependence for single-cell data points for high YFP expression.

Based on the above arguments, we believe that the region with the square root dependence represents

signalling and expression noise in individual cells and that the region with the linear dependence arises

from a different source. The only reasonable candidate for this other source is experimental fluctuations

in the microscopy and image analysis.

Consistent with this identification, we observed variation in the data that clearly arose from experi-

mental errors. Figure 6B,C shows fluorescence time-difference values, defined as

�y(s, i, t) = y(s, i, tj) − y(s, i, tj−1),

for the YFP and CFP data for cells measured at 20 nM �-factor, with one line for each cell. These lines

are colour coded to represent the three different microscope positions that were used while collecting

these data. Clearly, the fluorescence differences are highly correlated for different cells that are at the

same microscope position, and also the YFP and CFP data show the same trends. For example, the blue

traces are all high for both YFP and CFP at time point 10 and all low at time points 9 and 11; these effects

undoubtedly arose from changes in themicroscope sensitivity.As one possibility, these results may have
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Figure 6. (A) Relationship between mean and standard deviation YFP fluorescence for population data (yellow) and single-cell data
(green), shown on log-log scales. (B) and (C) Microscope artifacts for YFP and CFP.

arisen from fluctuations in the brightness of the microscope’s exciting light source. We tried to remove

these correlations from the data in preliminary work, but doing so led to additional artifacts and did not

affect the results substantially, so they are not removed for the results presented here.

Thus, we believe that the channel capacity value of 2.66 bits represents the channel capacity of the

measurement process itself, comprising both microscopy and image analysis. In this interpretation, the

measurement process is a communication channel that has a physical cell as its input and a fluorescence

value as its output, along with multiple sources of variation that disrupt perfect communication. Our

result shows that these experimental methods had sufficient precision to reliably distinguish between

about 6 different single-cell brightness levels, but not better than that. The linear relationship between

the single-cell standard deviation and mean values implies that this measurement channel capacity is

essentially the same for all cell brightnesses (this agrees with the expected result for a fluctuating excita-

tory light source, using similar logic as was given before for ‘extrinsic noise’). While this channel capacity

result doesn’t convey any information about the cells being studied, it does illustrate the importance of

high precision experimental methods.

3.3. Single cell channel capacity can exceed 3 bits
The square root dependence shown figure 6A represents the signalling and expression noise (�i and i)
within single cells, not including cell-to-cell variation or measurement errors. We used it to compute the

intracellular signalling precision.

The best-fit line to the square-root dependence is

�s.c.(s, t) = (110 F.U.1∕2)
√
�(s, t). (3.9)

Computing the channel capacitywasmore complicated than before because variation in the SRVdiagram

depended on the actual values of responses this time, and could not be computed from scaled values.

To address this, we defined an ‘average cell’, indexed as iav., as one whose mean response is equal to the

population average and whose variation over time is equal to the rms average variation. As equations,

�(s, iav., t) = �(s, t), (3.10)

�(s, iav., t) = �exp.(s, t). (3.11)

We also assumed that this average cell was measured at the final time point (number 14, at 205 min after

pheromone addition). We fit a Hill function to the population mean at the final time point, �(s, 14), to
create a dose–response function with absolute units [31]; then extrapolating it to high doses showed that

the average cell’s response at high pheromone concentrations was �max = 4.83 × 106 F.U. With this, we

rescaled equation (3.9) to

�s.c.(s, t)
�max

= (110 F.U.1∕2)
√�max

√
�(s, t)
�max

≈ 0.050
√

�(s, t)
�max

. (3.12)

This enabled us to plot the SRV diagram for this ‘average cell’, shown in figure 4I. As usual, the mean

dose–response curve represents the population average and is from equation (2.1). However, the vari-

ation in this case comes from equation (3.12), where �max is the maximum value of the dose–response
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curve. We again assumed Gaussian distributed noise, based on the assumption that stochastic noise in

signalling and gene expression arise from a combination of many factors. Computing the single-cell

channel capacity led to a result of 3.14 bits. It shows that an ‘average cell’ at 205 min after pheromone

stimulation has sufficiently precise signalling to distinguish between almost nine different pheromone

concentrations.

The fact that the single-cell variation only increases as the square root of themean implies that brighter

cells have higher channel capacities. For example, the channel capacity for the same average cell but at

the middle time point (number 7, at 100 min after stimulation) is 2.58 bits. Back to the final time point,

cells that are one standard deviation dimmer or brighter than the ‘average cell’ have channel capacities

of 2.73 and 3.38 bits, respectively.

3.4. Internal referencing could improve signalling accuracy
The difference between the population and single-cell channel capacities is equivalent to the difference

between the formal definitions of accuracy and precision. The former represent closeness to some correct

answer, whereas the latter represent measurement reproducibility. Our calculations show that individ-

ual cells have responses that may be far from the population average (low accuracy) because of high

cell-to-cell variability, but that each one signals consistently over time (high precision).

This raises the question of how cells can actually benefit from their precise signalling. Given that any

particular cell can only mate once, it would seem that its ability to transmit signals precisely would be

wasted because it would not know how to interpret its level of induced gene expression. In more detail,

a scientist who measured a single fluorescent response from a randomly chosen single cell, and who al-

ready knew all relevant population-level statistics, would only be able to use this single response value

to estimate the external pheromone concentration with the accuracy of the population channel capacity,

which is 1.35 bits. It seems that a cell would have the same limitations. However, yeast cells have been

experimentally shown to do better than this; as mentioned above, cells are able to select mating partners

accurately based on the strength of their pheromone signal [3].

One possibility is that signaling accuracy could be increased if the PRS system output could be cali-

brated against a reliable internal standard. In particular, expression levels of different genes tend to be

correlated [25,42,47], so one might imagine that a cell could compare the expression of a pheromone-

responsive gene with that of a constitutively expressed gene.

We investigated how this might increase signaling accuracy by quantifying the information that a

cell would learn if its YFP fluorescence value were divided by the simultaneously measured CFP value.

We computed the population channel capacity as before, now with these internally referenced fluores-

cence values, and found that the normalization increased the population channel capacity from 1.35 to

2.01 bits. This implied that a cell with internal referencing could accurately distinguish about 4 different

pheromone concentrations with a single measurement and without prior calibration. Such cellular com-

parison is not wholly unreasonable, given the fact that the PRS is already able to sense the fraction of

receptors bound by ligand, as opposed to only the absolute number of bound receptors [8,34]. By exten-

sion, cells could usemultiple internal standards, and/or standards that correlate particularly closely with

pheromone-responsive gene expression, to further improve their measurements of absolute pheromone

concentrations.

3.5. Quantification of relative sources of variation
We divided the variation in system output into categories to better understand where it arises. To do

so, we used the fact that the effects of multiple uncorrelated sources of variation can be combined by

adding their squared coefficients of variation, as shown above in equation (2.6). Results are summarized

in table 1.

We started with the total measured coefficient of variation, �pop. = 0.466, which squares to give �2pop. =
0.217. Also, the experimental coefficient of variation was �exp. = 0.131, which squares to give �2exp. = 0.017.
The ratio of these two squared values shows that 8% of the total measured variation arose from mea-

surement error, while the remaining 92% arose from biological variation. The difference of the squared

values gives the biological variation as �2(y) = 0.200, a result that agrees well with the value of 0.017 that

we found earlier from the same data set, but using different analysis methods [25] (this prior value was

found by comparing CFP and YFP expression, which decreased sensitivity to experimental error).
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Table 1. Contributions of different sources of variation. The “C–L et al.” column presents values from [25, p. 702]. The “Contribution”
column gives percentages, relative to the total variation in the same column. Values below the horizontal line either repeat or were
computed from values above the line.

variation symbols this work C–L et al. contribution

total measured �2pop. 0.4662 = 0.217 — —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

experimental noise �2exp. 0.1312 = 0.017 — —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

total biological �2(y) 0.200 0.17 100%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

single-cell noise �2(�) + �2() = �2s.c. 0.0352 = 0.0013 — 0.6%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

expression capacity �2(G) — 0.14 82%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

signaling power �2(L) + �2(�) — 0.029 17%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

expression noise �2() — 0.002 1.2%

expression capacity �2(G) — — 82%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pathway capacity �2(L) — — 17%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

expression noise �2() — — 1%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pathway noise �2(�) — — <1%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We further subdivided the variation using equation (2.6), but with the correlation term dropped,

�2(y) = �2(L) + �2(�) + �2(G) + �2(). (3.13)

The combined noise terms, �2(�) + �2(), arise from the same variation as the single-cell noise that was

investigated above. However, this is complicated by the square root relationship presented in equation

(3.9). We address it by extending the notion of an ‘average cell’ that was defined above by also assum-

ing that the pheromone dose has an intermediate value; more precisely, we assume that the cell’s YFP

expression level is exactly half of what it would be with a saturating pheromone dose. From equation

(3.12), this average cell’s single-cell noise coefficient of variation is 0.050∕
√
2= 0.035. Squaring this then

gives the single-cell noise as �2s.c. = 0.0013. This is 0.6% of the total biological variation, implying that the

remaining 99.4% of the variation arose from temporally stable cell-to-cell differences.

Our data do not allow further discrimination of the terms in equation (3.14), so table 1 also lists val-

ues that Colman-Lerner et al. [25] computed using correlations between CFP and YFP fluorescence. Their

values are not perfectly consistent with ours, such as the facts that they didn’t account for experimental

noise and that their expression noise contribution, �2(), is greater than our result for the sum of gene

expression noise and pathway noise, �2() + �2(�). Nevertheless, the two sets of results are in reason-

able agreement. Combining our results with theirs, shown in the lower half of table 1, leads to estimates

for each of the variation terms in equation (3.14). They show that the majority of the biological variation

arose from cell-to-cell differences in expression capacity, less from pathway capacity, and very little from

either expression or pathway noise.

A substantial fraction of the cell-to-cell variation in system output is simply due to the fact that some

cells were arrested in G1, with one copy of each fluorescent reporter gene, and others in G2, which is after

DNA duplication, so they have two copies of each gene. We quantified this contribution by returning to

the bimodal fit to the normalized population distribution that is shown in figure 4D. We computed the

variation for the different cell cycle states as

�2
phase

= �2pop.
(
a1�2

1
+ a2�2

2

)
, (3.14)

where a1 and a2 are the areas of the two Gaussians that we used for the fit, which add to 1, and �1 and �2

are the means of the two Gaussians; the mean for the total distribution is a1�1 + a2�2 = 0. Substituting in

the best fit values (a1 = 0.72, �1 = 0.46, a2 = 0.28, and �2 =−1.2) leads to �2
phase

= 0.13. Comparing this with

the total biological variation shows that 65% of the variation arose from cells being in different cell cycle

states, and 35% from other causes. This is in reasonable agreement with our prior finding that inhibiting

cell cycle progression reduced total variation by about 45% [25].

Subtracting �2
phase

from the total biological variation leads to �2 = 0.07; this represents the sum of the

cell-to-cell variation and noise terms, as in equation (3.14), but where the cell-to-cell variation only arises

from cell individuality and not from cells being in different cell cycle states. Because of this reduction
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in total variation, the relative contribution of the single-cell noise, �2s.c., increases to 2% of the total. The

remaining 98% of variation between cells that have identical genes, environments, and also cell cycle

states arises from temporally stable cell individuality.

4. Discussion
A large fraction of cell biology research focuses on how cells work, but much less investigates how well

they work. This study falls in the latter category, quantifying how well yeast cells are able to transmit

information from pheromone binding to cell-surface receptors, through the pheromone response sig-

nalling system, and on to the system output of protein expression. In agreement with substantial prior

work [20–22,25–29], we found that cells are able to measure and report signals with high precision, but

that system output varies widely between different cells, primarily due to temporally stable differences

in gene expression capacity.

Using information theory, we showed that cell-to-cell differences were large enough that knowledge

of a randomly chosen single cell’s output can only convey 1.35 bits of information about the stimulus

level. However, we found that each individual cell can distinguish between different stimulus levels up

to a precision of about 3.4 bits. We also separated the total measured variation in system output into its

components, finding that, in our data, 91% of it arose from temporally stable cell-to-cell differences, 8%

arose from measurement errors, and only 1% arose from stochastic noise in both the signalling pathway

and gene expression.

Several of the methods described here deserve further comment. First, our use of single-cell time-

series data for estimating mutual information is a novel approach that can be applied to essentially any

signalling system for which these data can be collected. In particular, it enables analysis of signalling

variability for cells that cannot be restimulated with different signal levels. The sole requirements on the

data set are that the cells behave independently of each other and that the response information is repre-

sented by the response strength.As a counter-example, some signalling systemsmay encode information

in the response duration [48], which could not be quantified with the approach described here.

Second, all our results were computed from smooth curves that were fit to raw data, rather than

from the raw data themselves. For example, we computed the SRV diagrams shown in figure 4 from

a fit to the dose–response curve, fits to graphs of fluorescence standard deviations arising at different

mean fluorescence levels, and fits to histograms of cell variation.We then computed information channel

capacities from these smooth SRV diagrams. This approach was essential here because only five differ-

ent pheromone concentrations were investigated experimentally; if we had used these raw data, then

the channel capacity results would have been artificially capped at five distinguishable levels, which

corresponds to log
2
5= 2.3 bits [49,50]. The interpolations and extrapolations that were inherent to our

fits removed these artifacts. More generally, our fits represented best estimates for the underlying cell

behaviors, without suffering from statistical anomolies that arise from small sample sizes.

Third, we separated cell-to-cell variation from other noise sources using a complicated normaliza-

tion procedure (equations (3.4)–(3.7)) rather than by fitting equations to the single-cell data traces. Our

approach, which is novel, had the benefit of introducing only one fitting parameter to each data trace

(�̃(s, i), shown in figure 5), which preserved as much of the variation as possible; in contrast, fitting each

trace with a non-linear equation would have required multiple fitting parameters, each of which would

have reduced the number of degrees of freedom for the data set and thus reduced the measured vari-

ation. Additionally, this normalization approach weighted variation evenly over time (�ỹ(s, i, t), shown

in figure 5 has similar statistics over all time values), whereas fitting without normalization would have

increased the weighting for deviations at longer times due to the larger fluorescence values.

Fourth, we were able to separate intrinsic and extrinsic noise contributions by considering scaling be-

haviors between standard deviation and mean values. In particular, the cell population data exhibited a

constant coefficient of variation (yellow dots in figure 4E), which supported our determination that this

variation arose almost exclusively from cell-to-cell variation. Likewise, most of the single-cell data also

exhibited a constant coefficient of variation (green dots in figure 4E), which also indicated extrinsic noise.

Based on this scaling behavior, we concluded that this variation arose from measurement noise. Finally,

some of the single-cell data exhibited a square root relationship between standard deviation and mean

values (figure 6A), from which we determined that it arose from intrinsic noise.

As mentioned above, a potential concern about our results is that our SRV diagrams were based on a

population-average dose–response curve rather than single-cell dose-response curves, which differ due

to the response diversity effect [23]. We did so because yeast cells can only be stimulated once, making
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single-cell dose-curves impossible to measure in this system. Nevertheless, it turns out that this doesn’t

actuallymatter because themutual information equation, equation (2.2), doesn’t depend on signal values

but only on signal probabilities. Thus, the mutual information is insensitive to any rescaling of the dose

axis, whether with a shift that would lead to a different EC50 or with an expansion or compression that

would lead to a different Hill coefficient. By extension, the channel capacity is also insensitive to the use

of the population-average dose–response curve versus single-cell dose–response curves, thus alleviating

this potential concern.

While the channel capacity is the correct metric for quantifying the fidelity of a signalling system, the

amount of information that is actually transmitted in nature is likely to be lower [15]. This is because

channel capacity computations assume the signal distribution, p(s) (see equation (2.2)), that produces

the most information transfer. However, most yeast cells live with the signal distribution that actually

arises from pheromone secreted from potential mates, which is presumably different from the optimal

one, leading to less information transfer.

Vice versa, our calculations may underestimate the true channel capacity because they are based on

snapshots of signals. That is, we used the full time-dependent single-cell data to compute statistics on

amounts of variation, but we then computed each channel capacity value for a single measurement at

a single time point. As with any noisy response, averaging many responses over time can improve the

overall precision, so cells may take advantage of this approach [28], or more sophisticated ones [51–54],

to improve their measurement precision.

This work raises the question of how cells are able to accomplish precise signalling despite both ex-

tracellular and intracellular variation. To this end, we highlight several approaches, or design patterns

[55], that have been identified as being important for precise signalling. One is linear signal transmis-

sion, in which the output of each step of a signalling pathway is directly proportional to the input; linear

signalling is widely conserved in cell signalling systems, including in the yeast PRS [1,56] and the mam-

malian EGF, Wnt and TGF� signalling pathways [57]. It enables better information transmission than

non-linear signal transmission because it avoids signal saturation, along with the concomitant increased

noise sensitivity and information loss [1,2,8]. Another approach is ratiometric detection, also observed in

the yeast PRS [34,58] and elsewhere [59,60], in which the number of ligand-bound proteins is compared

to the number of unbound proteins to determine percent occupancy. This enables a cell to accurately

determine extracellular ligand concentrations, independent of its number of receptors. Our hypothetical

use of an internal concentration standard, described above, is an extension of this ratiometric detection

concept. Yet another approach is fold-change detection, in which a cell determines the percent change

in protein binding over time, which increases sensitivity to changes in agonist concentrations and again

reduces sensitivity to the absolute number of cell-surface receptors [61–65]. Yeast uses a version of this

that has been called PRESS, for pre-equilibrium sensing and signalling, which particularly improves

information transmission for high pheromone concentrations [66].

A separate question concerns the biological causes of the wide cell-to-cell variation that is observed

in expression capacity. We quantified its width here, showing that a population of isogenic yeast cells in

identical environments had a coefficient of variation of 0.466, meaning that the standard deviation across

the population is almost half as large as the mean value. A substantial fraction of this variation turned

out to arise from cells being in different growth phases, but removing those differences still leaves a co-

efficient of variation of 0.26 (from §3.5, subtracting �2
phase

from �2y yields �2 = 0.07; taking the square root

gives � = 0.26). In other words, isogenic cells in identical environments and the same growth phase have

response standard deviations that are 26% of the response means. Nearly all of this cell-to-cell variation

appears to affect all genes equally (leading to its appellation ‘expression capacity’), suggesting that the

source of the variation could be in the gene expression system. For example, stochastic variation in the

numbers of ribosomes in different cells would affect all genes equally. However, this possibility does not

agree with the amount of observed variation because there are about 200 000 ribosomes per cell [67] and

variation for Poisson distributions, which is likely to be a good approximation in this case, is the square

root of themean, leading to a predicted variation of only about 0.2%, not the observed 26%.Alternatively,

cell-to-cell variation could arise from some common upstream transcriptional regulator [43]. If so, then

we can ask howmany molecules of this regulator, on average, would create the observed variation? The

answer is about 15 molecules (
√
15∕15≈ 26%), but we are unaware of any essential proteins in yeast cells

with such low copy numbers. This shows that if the observed cell-to-cell variation arises from stochastic-

ity in a single molecular species, then it is almost certainly amplified through some non-linear process,

such as positive feedback. Alternatively, the variation could arise from low copy numbers for multiple

different molecular species, but all of these would need to be upstream of the gene expression system.

We suggest that this would be an interesting topic for further research.
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Our finding that a single cell can sense, transmit signals, and respond precisely agrees with many

experimental results with different types of eukaryotic cells [3,21,68–70]. These present the consistent

picture that a wide variety of individual cells are able to make well-informed decisions on their own.

Ethics. This work did not require ethical approval from a human subject or animal welfare committee.

Data accessibility. All relevant data and data processing details are presented in the electronic supplementarymaterials,
in the main text of the paper, or in the paper’s appendix [71].

Declaration of AI use. We have not used AI-assisted technologies in creating this article.

Authors’ contributions. S.A.: conceptualization, investigation, methodology, writing—original draft, writing—review
and editing; R.B.: conceptualization, funding acquisition, writing—original draft, writing—review and editing.

Both authors gave final approval for publication and agreed to be held accountable for thework performed therein.

Conflict of interest declaration. We declare we have no competing interests.

Funding. This work was funded in part by NCI R21 CA223901 to RB, a Simons Foundation Fellowship awarded to SA,
and NCI U01 CA227544 to Herbert Sauro and H. Steven Wiley.

Acknowledgements. We thank Alejandro Colman-Lerner, Richard Yu, Gustavo Pesce, Alan Bush, and Bill Peria for as-
sistance with the experimental data sets and helpful discussions. We also thank Herbert Sauro and H. Steven Wiley
for helpful discussions and an anonymous reviewer for useful feedback.

Appendix A
This appendix describes how we computed channel capacity values from the equations that underlie

SRV diagrams (Mathematica source files are in the electronic supplementary material).

We started by defining the initial signal distribution as

p1(s) = N

�(s)
dr̄(s)
ds

. (A 1)

Here, �(s) is the standard deviation of the variation as a function of the signal. If the coefficient of varia-

tion is assumed to be constant, then it equals �r̄(s), where � is the coefficient of variation and r̄(s) is the
mean dose-response function; alternatively, for square root noise, it is proportional to

√
r̄(s) (the con-

stant of proportionality was found in equation (3.12) to be 0.050, although this isn’t important due to

normalization). The N parameter is a normalization constant set so that

∫
s

p1(s)ds= 1. (A 2)

To explain equation (A 1), the second factor makes the probability proportional to the slope of the

dose-response curve because this leads to a uniformprobability distribution over the responses. This pro-

cedure, known as histogram equalization in digital image processing and gain control in neuroscience,

optimizes the information transfer in the case of uniform noise [72,73]. The first factor further weights

the probability distribution in inverse proportion to the amount of noise in order to favor those signals

that are subject to lower noise. The resulting initial signal distribution is optimal, meaning the one that

gives the greatest possible mutual information, for cases in which the variation is much less than the

mean response [9]. This condition is not actually true but nevertheless leads to a good initial estimate.

Combining this signal distribution assumption with the conditional response probability, given as p(r|s)
and illustrated with shading in a SRV diagram, enables calculation of the initial response distribution as

p1(r) = ∫
s

p(r|s)p1(s)ds. (A 3)

Next, we iteratively optimized the signal distribution using the Blahut-Arimoto algorithm, which is a

variational optimization of the mutual information [9]. Its procedure involves the alternation of two

calculations. First, the signal distribution is updated from iteration n to n + 1with the equation

pn+1(s) = 1

Z
exp [∫

r

p(r|s) ln
p(r|s)pn(s)

pn(r) dr] , (A 4)

where Z is a normalization constant, defined so that

∫
s

pn+1(s)ds= 1. (A 5)
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Figure 7. (A)The shaded region illustrates the conditional probility p(r|s)with brighter regions corresponding to higher probabilities.
The x-axis represents the signal, shown with a log scale, and the y axis represents the response. Red curves below and on the left show
the initial signal and response distributions, p1(s) and p1(r). Colored curves below and left of those show the evolution of the signal and
response distributions over optimization iterations, pn(s) and pn(r); lines represent iterations 1 (red), 2 (orange), 5 (yellow), 10 (green),
20 (blue), 50 (magenta), 100 (purple), and 200 (black). (B) Mutual information increase over optimization iterations, showing data in
red and a rational function fit from (A 7) in black.

Second, the response distribution is updated using a modification of equation (A 3),

pn+1(r) = ∫
s

p(r|s)pn+1(s)ds. (A 6)

At any point, the mutual information [74] can be computed from equation (2.2). It is possible to constrain

the signal distribution during the optimization, such as to add a cost to particular signals or to enforce a

certain degree of smoothness [9]. However, we did not do so in this work because we sought the global

optimum, without artificial constraints.

These integrals need to be computed numerically, which we did with the Mathematica software. We

partitioned signal values from 10−4 to 104 nM of pheromone with a logarithmic step size of 0.05 (i.e.

possible signal values were at 10−4, 10−3.95, 10−3.9, ..., 103.95, 104), yielding equally spaced values along a

logarithmic axis. We also partitioned response values, scaled so that r̄(s) approaches 1 for large s, from
−1 to 4 in linear steps of 0.05. Negative response values are physically nonsensical but aremathematically

necessary because the assumption of Gaussian variation makes negative responses possible. Figure 7A

illustrates the discretized functions, showing p(r|s) as shading, p1(s) as the lower red curve, and p1(r) as
the red curve on the left.

We optimized the signal distribution using discrete versions of the above equations:

pn+1(s) = 1

Z
exp [

∑

r

p(r|s) ln
p(r|s)pn(s)

pn(r) ] (A 7)

∑

s

pn+1(s) = 1 (A 8)

pn+1(r) =
∑

s

p(r|s)pn+1(s) (A 9)

I(s; r) =
∑

r

∑

s

p(r|s)p(s) log
2

p(r|s)
p(r) . (A 10)

We performed 200 iterations of optimization, at which point the mutual information had nearly stopped

increasing, shown with red points in figure 7B. However, the mutual information was still increasing

slightly, so we fit the mutual information data points to a rational function of the form

In(s; r) = c + a

1 + bn
, (A 11)
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where n is the iteration number and a, b, and c are fit parameters; this is shown with a black line in

figure 7B. Taking this equation to the limit of infinite iterations shows that I∞(s; r) = c, meaning that c is

the channel capacity. We quoted these values in the main text.

The signal distribution evolved substantially during the optimization, changing from a simple smooth

unimodal distribution to a widely spaced and spiky distribution, as shown in the bottom graph of

figure 7A. It also did not stop evolvingwithmore iterations, but continued becomingmorewidely spaced

and more spiky. The number of spikes did not correspond to the number of distinguishable signals. For

example, the population channel capacity was only 1.35 bits, which corresponds to 21.35 = 2.5 distinguish-
able signals, but the final signal distribution has 6 peaks in it and would likely have more if we had

continued the optimization.

On the other hand, the response distribution did not change appreciably after the first several it-

erations, as shown on the left side of figure 7A. The fact that neither the response distribution nor the

mutual information changed substantially during optimization, even as the signal distributionwent from

a smooth unimodal distribution to a spiky one, indicates that the precise shape of the signal distribution

is not particularly important. Thus, the fact that we did not constrain the smoothness of the signal dis-

tribution during optimization is unlikely to have made a substantial difference to the computed channel

capacity.
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