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Vibrational Stark effects, which are the effects of electric fields on vibrational spectra, were measured previously
for the C-N stretch mode of several small nitriles, yielding difference dipole moments, difference
polarizabilities, and transition polarizabilities for each species [Andrews, S. S.; Boxer, S. G.J. Phys. Chem.
A 2000, 104, 11 853]. This paper explains the physical origins of the observed Stark effects using two theoretical
models and, in the process, computes several molecular parameters for each nitrile. A model with a single
vibrational mode, developed with perturbation theory, is found to explain most of the experimental Stark
effects. Because it cannot account for coupling between modes, which is ubiquitous and important for resonant
vibrations and for combination mode absorption, another model is developed which considers multiple
vibrational modes and three spatial degrees of freedom. It is found that difference dipole moments arise from
a combination of mechanical anharmonicity and electronic perturbations of chemical bonds, where the two
factors have about equal magnitudes for nitriles. Transition polarizabilities are dominated by the effects of
electronic polarizability of the sample molecule, which alters the partial charges on atoms in an electric field.
Stark effects of resonant transitions are found to be equal to linear combinations of the effects for the basis
states, which explains an experimental observation. For overtone and combination transitions, Stark shifts
are predicted to be the sums of the shifts of the component transitions. Absolute overtone intensities can be
calculated from difference dipole results, which is experimentally verified. In summary, these theories largely
explain the physical origins of observed vibrational Stark effects and can predict Stark effects for a wide
variety of other systems.

Introduction

Molecular vibrations are sensitive to the local electrostatic
field, leading to field-induced changes in the infrared absorption
spectrum, called the vibrational Stark effect. It has recently
become relatively simple to measure these effects for a wide
variety of condensed phase samples, where results include those
for small nitriles dissolved in frozen 2-methyl-tetrahydrofuran1

and carbon monoxide2 and nitric oxide3 bound to the heme iron
in myoglobin. Knowledge of the sensitivity of a vibrational
frequency to an electric field, the Stark tuning rate, calibrates
the transition for use as an empirical probe of local electric
fields.2 This has been used to measure electric field changes
within the myoglobin protein2,3 upon protonation and mutation.
Current work involves engineering Stark effect probes into
proteins to serve as extremely small and versatile electric field
sensors, with potential applications in electron-transfer research,
studies of protein conformational changes, and studies of
protein-ligand interactions. Challenges of this work include the
identification and selection of highly sensitive probes and the
interpretation of results. This paper addresses the underlying
physics of vibrational Stark effects, which can be used to predict
effects for a wide variety of probes in various environments, as
well as to lend insight into the physics of molecular vibrations.

Several theoretical approaches are available for studying
vibrational Stark effects. For very small molecules, ab initio
methods have been used to calculate vibrational frequencies and
intensities in varying electric fields.4-8 Although the best results
are likely to be very accurate for vapor phase samples,9 they
are difficult to extend to either larger molecules or to condensed

phase samples; also, they have not been in good agreement with
experiment.1,10The semiempirical AM1 method has been shown
to yield results in good agreement with ab initio theory,11 which
allows calculations for more complex systems, but does not
improve the accuracy. Starting from a less fundamental level,
the classic “balls and springs” model can also be used, in which
field effects are given in terms of chemical bond force constants
and bond anharmonicities. This standard method12-19 is used
below and yields results that are easy to interpret and that are
readily generalizable to large molecules and condensed phase
samples. It also serves as a useful intermediate level of theory,
connecting parameters that can be measured experimentally with
those that can be calculated from first principles.

In a previous paper,1 a complete set of six Stark parameters
was reported for acetonitrile and 4-chloro-benzonitrile; three
of the parameters were reported for a variety of other small
nitriles as well. The parameters are the dominant terms of the
difference dipole moment,∆µ, the difference polarizability,∆r,
and the transition polarizability,A. These parameters, along with
the zero field transition dipole moment,M , and the transition
hyperpolarizability,B, are defined by expansions of the field-
induced vibrational frequency shift and the vibrational transition
dipole moment in terms of the electric field,F

M is used to define the molecularz axis. We showed that∆µ

∆νj(F) ) - 1
hc(∆µ ‚ F + 1

2
F ‚ ∆r ‚ F + ‚‚‚) (1)

M (F) ) M + A ‚ F + F ‚ B ‚ F + ‚‚‚ (2)
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values were largely explained by bond anharmonicity but several
questions were left unanswered, such as (i) does this relationship
stand up to a more thorough treatment and what accounts for
the remainder of∆µ, (ii ) what are the physical origins of∆r
andA, (iii ) canB be estimated, and is it really appropriate to
ignore it, (iV) how does coupling between modes affect Stark
effects, (V) what would cause the vector and matrix Stark
parameters to have components that are not parallel to the
transition dipole moment, and (Vi) what should be expected for
overtone, combination, and resonant transitions? These questions
are addressed below.

Theory

A normal-mode analysis of the vibrations of a molecule,
including only lowest order terms, yields a set of vibrational
frequencies and normal modes.20,21 In this zeroth order ap-
proximation, the modes may be considered as uncoupled
quantum harmonic oscillators, each with uniformly spaced
energy levels and transition dipoles that only allow transitions
between adjacent states. However, interatomic forces are not
perfectly harmonic, having both anharmonicity in the normal
modes and anharmonic coupling between the modes. Among
other things, anharmonicities lead to intramolecular energy
redistribution,22 overtone and combination mode absorption,20

vibrational solvatochromism,23 and Fermi resonance.24 They also
contribute to vibrational Stark effects.13-15,18,19

Molecular vibrations are affected by a weak electrostatic field
in two ways:16 mechanical effects arise from electrical forces
on atoms with partial electric charges; electronic effects arise
from the interaction of the field with the molecular electron
cloud, which perturbs chemical bonds and alters the charge
distribution in the molecule. These effects are made quantitative
with the perturbation models given below.

Single Mode Theory.For vibrations in which a normal mode
is highly localized to just a pair of atoms, it is possible to ignore
its coupling to other vibrational modes, at least as a first
approximation. In this model, the atoms are separated a distance
x away from their equilibrium distance, the reduced mass ism,
and the effective electric charge isq.25 The harmonic vibrational
frequency,ω, is equal to (κ/m)1/2, whereκ is the quadratic force
constant. To include both mechanical and electronic effects, the
potential energy,V, is expanded in terms of the atomic
separation and the component of the electric field that is parallel
to the bond,F. The expansion can be expressed compactly with
a matrix

The terms equal toκ/2 and -q are nonzero for a simple
harmonic oscillator; for the perturbation parameters, the number
of primes gives the power of the field dependence and the
subscript gives the power of thex dependence. The terms in
the lower right corner, as well as higher order terms that are
not shown, are set to 0 because they are expected to be
negligible. In this standard expansion, the rows of the matrix
give the potential function, the dipole function, and the
polarizability function, respectively.17 An alternate view of the
double expansion, which is more relevant to the derivations
below, is that the columns of the matrix give the field
dependencies of the linear, quadratic, and anharmonic force
constants. The only approximations in a Hamiltonian constructed

with eq 3 as the nuclear potential function are the Born-
Oppenheimer approximation and the neglect of higher order
terms.

The notation used in eq 3 was chosen for clarity here and in
the equations below and to emphasize the relationship between
the expansion parameters and the potential energy. Other
treatments use a plethora of different notations; ours corresponds
respectively with that of Hush,9,10,19Lambert,11,15and Dykstra17

as follows26

Terms in eqs 4 to 11 shown as being equal to zero were not
included in the original expansion. Several other sets of notation
have been used as well.4,8,12,16,27

Using perturbation theory,28 we solved for the eigenstate
energies of an anharmonic oscillator; we also calculated
transition dipoles between the eigenstates using the dipole
operator

Results were carried out to first order in the quartic anharmo-
nicity and to second order in the cubic anharmonicity. The
reason for going to second order for some terms is that the
second order cubic anharmonicity term is typically larger than
the first order quartic anharmonicity term. This relationship can
be seen in many ways: the first overtone transition energy is
invariably less than twice the fundamental transition energy,
despite V4 being positive for most vibrations; by Taylor
expansion of a Morse potential,29 it is found thatV4 ≈ V3

2/κ;
and by substitution of experimental values in the equations
below. Force constants and the effective charge were then
expanded in terms of the field, using the molecular parameters
defined in eq 3. Using Mathematica software,30 the results were
expressed as a series inF, yielding the Stark parameters defined
by eqs 1 and 2. Although the intermediate equations are not
presented here, comparable ones are presented in the next
section, where the theory is considered for multiple modes. As
this model considers only a single normal mode, it predicts that
all Stark effect parameters are parallel to the normal coordinate.
Carried out to second order inV3, V2′, andV1′′ and first order in
V4, V3′, andV2′′, the results for transitions between the ground
and first excited states are as follows31

V ) V0 + [1 F F2 ][0 κ

2
V3 V4

-q V′2 V′3 0
V′′1 V′′2 0 0 ][xx2

x3

x4] (3)

κ ) 2a1 ) 2a20 ) 2c (4)

V3 ) a2 ) a30 ) 0 (5)

V4 ) 0 ) a40 ) 0 (6)

q ) m1 ) -a11 ) µ0 (7)

V2′ ) -m2 ) a21 ) -g1 (8)

V3′ ) -m3 ) a31 ) 0 (9)

2V1′′ ) -r1 ) 2a12 ) -r0 (10)

2V2′′ ) -r2 ) 2a22 ) -g2 (11)

M̂(x,F) ) -
∂V(x,F)

∂F
(12)

∆E ) pω(1 +
3pωV4

κ
2

-
15pωV3

2

2κ
3 ) (13)

∆µ ) pω(-
3qV3

κ
2

-
V′2
κ ) (14)
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The difference in molecular dipole moments between the ground
and the excited states, using the dipole operator given in eq 12,
yields the same result as is given in eq 14. Thus,∆µ, which is
called the difference dipole moment, is also equal to the
difference in physical dipole moments between the ground and
excited states, to the level of approximation used here. This
identification breaks down at higher levels of theory.19 Using
the language introduced above, the first term in eq 14 represents
the mechanical contribution to the dipole moment difference,
whereas the second term represents the electronic contribution,
both of which can be understood qualitatively. The first term
arises from the dipole moment difference created by moving
the effective charge,q, a small distance upon vibrational
excitation; the distance is the change in the average bond length
and is proportional to the cubic anharmonicity,V3. The second
term is more subtle:V2′ expresses the degree to which the
harmonic force constant can be varied by an applied electric
field, due to the influence of the field on the molecular electron
cloud. Alternatively, in the absence of an external field, the total
energy of an excited vibrational state can be minimized by
shifting the electron cloud in a way that lowers the harmonic
force constant. In the process, the shifted electron cloud yields
a difference in molecular dipole moments, as given by the
second term of eq 14.

The terms in∆µ andA| are expected to be relatively large
because the perturbation parameters are the low-order terms of
the Taylor expansion. In contrast,∆r|, B|, and the perturbation
components of∆E and M are expected to be much smaller
because all of their terms include either higher order terms of
the Taylor expansion or products of low-order terms. Although
they are not shown above or considered elsewhere, it was found
that theF3 terms of eqs 1 and 2, the difference hyperpolariz-
ability and transition hyperpolarizability, respectively, are zero
to consistent order in the perturbation parameters, justifying the
fact that they are ignored.

All of the expansion parameters in eq 3 are treated as
independent terms to allow maximal versatility, although several
simplifications are possible. In particular, about half of the
parameters are equal to zero for symmetric systems, such as
the antisymmetric stretch mode of CO2 or the vibration of N2.
For nonsymmetric systems, as well as some symmetric ones,
the assumption of a Morse potential29 can be used to relate some
of the parameters to each other, such asV3 and V4. Finally, a

more detailed consideration of the vibronic coupling is likely
to yield V2′ and other parameters in terms of electronic
observables.

Multi-Mode Theory. The single mode theory given above
is expected to capture the most important aspects of vibrational
Stark effects, but is incomplete since it ignores the coupling of
different vibrational modes by anharmonicity. It also does not
allow the interpretation of angle-dependent data, such as whether
∆µ can be nonparallel toM and which elements ofA are
expected to be nonzero. Thus, the theory was rewritten for an
arbitrary set of vibrational modes. The derivation of the multi-
mode equations is completely analogous to the single mode
theory but is more complex because most scalars are replaced
with vectors, matrixes, or higher-order tensors. Also, the
coordinate system requires more attention to account for the
multiple modes, for mixing of modes, and for the three spatial
degrees of freedom. Due to the increased complexity, perturba-
tion theory is carried out to lower order, with the result that
cubic anharmonicity is considered to first order and quartic
anharmonicity is ignored.

As a starting point, it is assumed that normal vibrational
modes have been found for the molecule of interest in the
absence of an electric field and that there is no degeneracy.
Following the notation of Wilson et al.,20 the mass-weighted
normal coordinates are given byQi, the linear force constants
are fi, the quadratic force constants arefij, and cubic force
constants arefijk. These are fully symmetric tensors, meaning,
for example, thatfij ) fji and fijk ) fjki ) fkji. In the absence of
an electric field, the force constants are in a normal coordinate
system so the normal-mode frequencies are (fii)1/2, the fi terms
are zero, and the off-diagonal components offij are all zero.
However, in a field, all components of all force constants may
change slightly, arising from mechanical and electronic effects.
Leaving the field arbitrary at present, the potential and kinetic
energies are32

An electric field shifts the equilibrium point of the system, which
physically represents an adjustment of the equilibrium bond
lengths to achieve the lowest energy configuration. An ap-
proximate value for the shift of the equilibrium of thei’th mode
is given byQi°, defined by

The potential energy, with the coordinates shifted byQi°, is
rewritten as

The quadratic term is no longer diagonal because of the
coordinate shift and electronic perturbations. To first order, the
off-diagonal elements do not contribute to the vibrational
eigenvalues,λi. However, they do contribute to the eigenvectors,
aij, which are unitless terms that can be used to rotate the
coordinate system to account for the electric field

∆r| ) pω(-
12q2V4

κ
3

-
6qV′3
κ

2
-

2V′′2
κ

+
18q2V3

2

κ
4

+
27qV3V′2

κ
3

+

V′22

κ
2

+
6V3V′′1
κ

2 ) (15)

M ) qxpω
2κ (1 -

3pωV4

2κ
2

+
103pωV3

2

12κ3
+

5pωV3V′2
κ

2q
-

3pωV′3
2κq ) (16)

A| ) qxpω
2κ (-

3qV3

2κ
2

-
5V′2
2κ

-
2V′′1
q ) (17)

B| ) qxpω
2κ (-

3q2V4

κ
3

-
9qV′3
2κ

2
-

9V′′2
2κ

+
189q2V3

2

8κ
4

+

63qV3V′2
4κ

3
+

45V′22

8κ
2

+
9V3V′′1
2κ

2
+

3V′2 V′′1
κq ) (18)

V ) V0 + fiQi + 1
2
fijQiQj + 1

6
fijkQiQjQk (19)

T ) 1
2
Q̇iQ̇i (20)

fijQj° ≡ - fi (21)

V ) (V0 + 1
2
fiQi° + 1

6
fijkQi°Qj°Qk°) + (12fijkQj°Qk°)(Qi - Qi°)

+ 1
2
(fij + fijkQk°)(Qi - Qi°)(Qj - Qj°) + 1

6
fijk(Qi - Qi°)(Qj -

Qj°)(Qk - Qk°) (22)
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A new set of notation is introduced for the shifted and rotated
coordinate system. The variablesqi are the mass-weighted
normal coordinates in an arbitrary field,VF is the energy at the
new origin, and the new force constants areki, kij, andkijk

The new definitions simplify the potential expression to
resemble eq 19

The reason for shifting and rotating the coordinates is that the
new linear force constants,ki, are proportional to the cubic
anharmonicity, allowing them to be treated as perturbation
parameters. Also, the off-diagonal elements of the quadratic term
are zero to first order.

Using perturbation theory to solve for the quantum energies
of the system, it is found that neither the linear nor the cubic
terms of eq 30 couple energy levels to first order. Usingni as
the quantum number of thei’th mode, the quantum energy levels
are just the sum of the energies for each separate mode

As in the single mode theory, thefi, fij, andfijk force constants
are expanded in terms of the electric field

µi is called a dipole gradient because it is the change of the
dipole moment upon motion in thei’th mode, and is analogous
to the effective charge considered in the single mode theory.
Because normal coordinates were assumed at the beginning,Vij

is diagonal and is more conveniently represented withκi, where
κi ) 2Vii; the harmonic frequencies areωi ) (κi)1/2. Substituting
for kii in eq 31 yields the field dependent energy levels

This can be simplified to give the Stark shift for the excitation
of the i’th mode by one quantum level

To first order, there is no difference polarizability. Not surpris-
ingly, the difference dipole given in eq 34 is similar to its single
mode analogue in eq 14. As before, the first term represents
the mechanical contribution, from the force of the field on
charged atoms combined with anharmonicity in the potential
energy surface. Because the shift of equilibrium positions (the
distortion of the molecule) is typically not along a single normal
coordinate, this term involves a sum over the vibrational modes.
The second term, representing electronic interactions, is the
dipole moment vector associated with electron cloud rearrange-
ments that occur upon vibrational excitation. Although it is
generally expected that the vectors in eq 34 that are parallel to
µi will dominate the expression, yielding∆µ parallel toM , it
can be seen how other terms may contribute as well. Equation
33 is a more general result and shows that Stark shifts for
overtone transitions and combination transitions are the sums
of the shifts for single transitions. For example, a first overtone
absorption is expected to have twice the Stark shift of the
corresponding fundamental absorption. This property was also
found in the single mode analysis for both∆µ and∆r|, to the
higher-order theory used in the previous section.

Multi-mode transition dipoles are computed, as before, with
the dipole operator

The operator is re-expressed in the shifted and rotated coordinate
system so the position factors,qi, can be replaced by raising
and lowering operators.28 First-order perturbations to the
quantum states, using theki andkijk terms as the perturbations,
are also found. Combining the dipole operator with the perturbed
initial and final states yields equations for field dependent
transition dipoles, which are separated into terms forM , A, and
B, althoughB is found to be zero to first order. For an excitation
of one level in thei’th mode

TheT symbols in eq 37 denote vector transposes, with the result
that all vector products are outer products andA is a matrix, as
it should be. In the absence of a field (eq 36), the transition
dipole is parallel to the dipole gradient. In the transition
polarizability equation, most terms were found in the single
mode analogue, eq 17, whereas the others arise from the
coordinate rotation and the corresponding mixing of normal
modes.

Excitation by two quantum levels, yielding either overtone
absorption or combination mode absorption, is forbidden for a
simple harmonic oscillator but is possible in real molecules and
for the systems considered here. These transition dipoles are
calculated as well

λi ) fii + fiikQk° (23)

aij ) {1 i ) j
fij + fijkQk°

λj - λi
i * j

(24)

qj ≡ (Qi - Qi°)aij (25)

VF ≡ V0 + 1
2
fiQi° + 1

6
fijkQi°Qj°Qk° (26)

kl ≡ 1
2
fijkQj°Qk°ail (27)

klm ≡ (fij + fijkQk°)ailajm (28)

klmn ≡ fijkailajmakn (29)

V ) VF + kiqi + 1
2
kijqiqj + 1

6
kijkqiqjqk (30)

E(F) ) VF + pkii
1/2(ni + 1

2) (31)

V ) V0 + [1 F F2 ][0 Vij Vijk

-µi v′ij 0
v′′i 0 0 ][Qi

QiQj

QiQjQk
] (32)

E ) VF + pωi(1 +
3Viij µj

κiκj
F +

v′ii
κi

F)(ni + 1
2) (33)

∆µni-1fni
) - pωi(3Viij µj

κiκj
+

v′ii
κi

) (34)

M̂ (Q,F) ) -∇FV(Q,F)

) µiQi - 2v′′iFQi - v′ijQiQj (35)

Mni-1fni
) µixpωini

2κi
(36)

Ani-1fni
) xpωini

2κi
[-

3µiViij µj
T

2κiκj

-
µiv′Tii

2κi

- 2v′′i -
2v′′ijµj

T

κj

+

∑
k*i

µk

2κjv′Tik + 6Vijkµj
T

κj(κi - κk) ] (37)
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Transition polarizabilities for overtone and combination transi-
tions are zero to first order. Because the molecular parameters
in eq 38 are the same as those in the expression for∆µ (eq
34), knowledge of one quantity can aid in the prediction of the
other. A couple terms worth noting in eqs 38 and 39 are ones
with frequency differences in the denominators, which give rise
to strong intensity sharing between nearby transitions, an aspect
of Fermi resonance. Because nondegenerate perturbation theory
was used, the equations are progressively less accurate as
frequencies approach each other.

Resonant Transitions.So far, it has been assumed that the
energy levels are nondegenerate. However, even small molecules
typically have enough vibrational modes or enough symmetry
that degeneracy is common. For degenerate or nearly degenerate
systems not in an electric field, thefij matrix has two or more
diagonal elements that are the same or nearly the same and off-
diagonal elements that are zero, as before. Also, as before, a
field perturbs both the diagonal and the off-diagonal elements.

For vibrational modes that are completely degenerate in the
absence of a field (e.g., the bending vibrations of CO2), the
normal modes may be expressed in any of several representa-
tions, making it possible to choose one in which the off-diagonal
elements offij remain zero in an electric field. As a result, the
eigenvector elements given in eq 24 that would become singular
due to multipleλi terms with the same value, are instead equal
to zero. With this representation, it is found that the rest of the
analysis in the previous section remains correct. In particular,
eqs 34 and 37 give the Stark effects for degenerate modes, as
well as for nondegenerate modes.

More generally, it is often desirable to consider a normal
mode vibration as a linear combination of basis state vibrations.
Examples include the degenerate systems presented above and
situations in which Stark effects are known for an isolated probe
which is then attached to a protein, where it couples with protein
vibrations. In these cases, it is useful to be able to calculate the
Stark effects of the resonant modes from a knowledge of the
Stark effects of the basis states. This is demonstrated here with
a two level model system. The vibrationally excited basis states
are taken to be|A〉 and |B〉 which mix to form superposition
states|A′〉 and |B′〉, with a mixing coefficientc

The transition dipoles and transition polarizabilities of excita-
tions to the superposition states are found with a general
transition dipole operator (from eq 2), resulting in expressions
that include the same linear combinations as in the quantum
states. UsingMΨ andAΨ as the transition dipole and transition
polarizability for excitation to excited state|Ψ〉

The difference dipole moments are found by transforming the
fij andfijk force constants from the|A〉, |B〉 basis to the|A′〉, |B′〉
basis, yielding the results

For example, if a molecule has an intense absorption band with
a large Stark effect near a weak band with no Stark effect, small
amounts of quadratic coupling will transfer about the same
fraction of absorption band area and∆µ value from the strong
band to the weak band (it is assumed that the final term in eqs
43 and 44 are smaller than the others despite the larger coupling
factor, which is expected because bothVABj andvAB′ are off-
diagonal terms and thus typically very small). This example
explains the Stark effect spectrum measured for15NO bound to
myoglobin3.

Results and Discussion

Single Mode Analysis of Acetonitrile and 4-Chloroben-
zonitrile. Our previously published Stark effect data for
acetonitrile and 4-chloro-benzonitrile1 were analyzed using the
single mode theory, for which the results are presented in Table
1. These data, which are the best experimental data currently
available, include both magnitudes and available orientational
information for ∆µ,∆r, and A. Only the components of the
parameters that are parallel to the transition dipole are considered
in this section, leaving some of the other components for the
multi-mode analysis, below. The sign convention is that the
positive z axis points from the nitrile carbon to the nitrogen.
Using electronegativity arguments or results from ab initio
calculations,33 the carbon has a partial positive charge, whereas
the nitrogen has a partial negative charge. Several signs of the
parameters in the single mode theory were assigned from this
physical picture, yielding negative values for the transition
dipole, the difference dipole, and the effective charge.

Although most of the necessary parameters for the theory
were directly measured by experiment, several had to be taken
from the literature or from calculation. Our previous paper1

reported Stark effect results in terms of a local field correction
factor, f; as in that paper we assume here thatf has a value of
1.1. The acetonitrile absorption frequency is known to be shifted
below the frequency of just the nitrile stretch mode by a Fermi
resonant interaction, so the analysis uses a frequency which has
been corrected for Fermi resonance.34 The reduced masses of
the nitrile stretch modes were calculated from a normal
coordinate analysis of the molecules33 using a 6-31G* ab initio
calculation for acetonitrile and an AM1 semiempirical calcula-
tion for 4-chloro-benzonitrile. The uncertainties of the corrected
absorption frequency and the masses could not be estimated
reliably but are expected to be much smaller than other errors,
so they were ignored. Because the Stark effect cannot separate
anharmonicity contributions (theV3 term) from the field effect
on the force constant (V2′), we used published anharmonicity
values from spectroscopic data of HCN.35 These values are for

Mni-2fni
) -

pxni(ni - 1)

2ωi
[v′ii +

3µjViij

2ωj
( 1
2ωi + ωj

-

1
2ωi - ωj

)] (38)

Mni-1fni

nj-1fnj

) -
pxninj

2xωiωj
[v′ij +

3µkVijk

ωk
( 1
ωi + ωj + ωk

-

1
ωi + ωj - ωk

)] (39)

|A′〉 ≡ x1 - c2|A〉 + c|B〉 |B′〉 ≡ - c|A〉 + x1 - c2|B〉 (40)

MA′ ) x1 - c2MA + cMB MB′ ) - cMA + x1 - c2MB (41)

AA′ ) x1 - c2AA + cAB AB′ ) - cAA + x1 - c2AB (42)

∆µA′ ) (1 - c2)∆µA + c2∆µB -

2cx1 - c2 p
ωA′

(3VABjµj

κj
+ v′AB) (43)

∆µB′ ) (1 - c2)∆µB + c2∆µA +

2cx1 - c2 p
ωB′

(3VABjµj

κj
+ v′AB) (44)
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HCN rather than the molecules analyzed here and they represent
just the anharmonicity of the nitrile bond rather then the
anharmonicity of the normal mode. However, they are expected
to be good approximations of the correct values because nitrile
bond force constants have been shown to be transferable among
a large collection of benzonitriles36,37 and the normal mode of
interest is highly localized to the nitrile bond.38 For acetonitrile,
more anharmonicity data is available, yielding results in good
agreement with these, as shown below, whereas for 4-chloro-
benzonitrile more accurate anharmonicities are not available.
The uncertainties in the anharmonicities used in Table 1 are
those published with the original values,35 but are lower limits
for this application because of the these limitations. Finally,
the sign ofV2′ was chosen to be in agreement with theoretical
calculations10 and with the resonance structure model presented
below.

The calculated uncertainties in Table 1 were found by carrying
out computations several thousand times, using input parameters
that were normally distributed about the best available values
and with standard deviations that matched their uncertainties.
The standard deviations of the results computed in this way
are reported as their uncertainties. Table 1, and the other tables,
use an especially convenient set of SI derived units. Using
angstroms (10-10 m), 10-28 kilograms, femtoseconds (10-15 s),
attocoulombs (10-18 C), attojoules, and volts eliminates the need
for unit conversion and leads to values for most fundamental
constants and most molecular quantities between 10-3 and 103.
Conversion factors to common non-SI units include 1 D)

0.033 36 aC Å, 1 Å3 of polarizability volume) 0.011 13 aC
Å2/V, 1 cm-1 of energy) 1.9865× 10-5 aJ, 1 MV/cm) 0.01
V/Å, and 1 mdyne) 1 aJ/Å.

It is seen that anharmonicity accounts for about 39% of∆µ
for acetonitrile and about 47% of∆µ for 4-chloro-benzonitrile.
These are significant decreases from our earlier estimate of 70%
for all nitriles,1 because the previous estimate only considered
the slope of the correlation between∆µ and the effective charge
and it also incorrectly adjusted for the local field correction (we
divided by f where we should have multiplied byf). The
remainder of the∆µ term arises fromV2′, which represents the
effect of the electric field on the harmonic force constant. Its
value implies a 0.026% and a 0.030% increase in the harmonic
force constant upon application of a 1 MV/cm field parallel to
the nitrile bond for acetonitrile and 4-chloro-benzonitrile,
respectively. The origin of this effect is most easily understood
by considering charge-separated resonance structures of 4-chloro-
benzonitrile, which are stabilized or destabilized in an electric
field. The field influences the harmonic force constant because
it changes the relative importance of the different resonant
structures, which have different nitrile bond strengths.

Although ∆µ arises from a combination of anharmonicity
and the effect of the field on the harmonic force constant, these
account for less than 1% ofA|. Instead,A| arises almost
exclusively fromV1′′, which represents the field dependence of
the effective charge, due to electronic polarizability. In the same
1 MV/cm field, V1′′ yields about a 2.5% increase in the effective
charge for both molecules (the effective charge becomes less
negative). Returning to qualitative arguments with the 4-chloro-
benzonitrile resonance structures shown above, thisV1′′ calcula-
tion is in agreement with the expected charge distribution on
the nitrile group.

The physical origin for∆r| is less intuitive, but can be
considered in terms of the relative sizes of the seven terms in
eq 15. Using results from∆µ andA|, the first, fourth, fifth, and
sixth terms of ∆r| each contribute insignificantly to the
measured result, leading to a total contribution of less than 3%.39

Because the first and fourth terms are the only terms that include
just mechanical effects, this origin of∆r| is ruled out, leaving
electronic effects as the dominant source. The seventh term
(∝V3V1′′) yields a significant positive contribution to∆r| which
must be offset by the second and third terms (∝-V3′ and∝-V2′′,
respectively) because∆r| was determined to be negative; the
sum of the second and third terms is calculated to be about
-10-2 aC Å2 V-1. Although the values of these final two terms
cannot be separated with the available information, it can be
seen that they significantly contradict results from ab initio
theory. Calculations10 find thatV2′′ is about-0.023 aJ V-2 and
V3′ is about 0.032 aJ Å-2 V-1, leading to a combined contribu-
tion to ∆r| of only 10-6 aC Å2 V-1. It is not presently known
whether this discrepancy arises from approximations made in
the analysis of experimental data to yield∆r|,1,40or from those
made in the ab initio calculations.

In the original analysis,1 the transition hyperpolarizability was
assumed to be zero since it could not be measured indepen-
dently. Using results that are largely independent of this
assumption,B| was calculated with eq 18 and found to change
the transition dipole by up to about 1 part in 105, for molecules
oriented parallel to a 1 MV/cm field. These values could be

TABLE 1: Single Mode Results for Acetonitrile and
4-Chloro-benzonitrile

variable unit Acetonitrile 4-Cl-benzonitrile source

parameters used by theorya

νj cm-1 2270.6 2230.6 ref 34;
ref 1

M 10-3 aC Å -1.94 (0.02 -2.97 (0.03 ref 1
∆µ 10-3 aC Å -0.965 (0.005 -1.277 (0.012 ref 1
∆r| 10-3 aC Å2

V-1
-8.1 (1.8 -2.7 (2.9 ref 1

A| 10-3 aC Å2

V-1
9.67 (0.76 13.34 (0.89 ref 1

m 10-28 kg 108.7 109.0 noteb
V3 aJ Å-3 -20.99 (0.23 -20.99 (0.23 ref 35
V4 aJ Å-4 24.2 (1.2 24.2 (1.2 ref 35

calculated resultsc

ω fs-1 0.4323 (0.0003 0.4252 (0.0003 eq 13
κ aJ Å-2 20.32 (0.02 19.70 (0.03 mω2

q aC -0.0541 (0.0006 -0.0829 (0.0009 eq 16;
noted

V2′ aC Å-1 0.262 (0.003 0.296 (0.007 eq 14
V1′′ aC Å V-1 -0.143 (0.011 -0.196 (0.013 eq 17
∆µ term 1e 10-3 aC Å -0.376 (0.005 -0.603 (0.009 eq 14
A| term 3f 10-3 aC Å2

V-1
9.61 (0.76 13.22 (0.89 eq 17

∆r|

term 7g
10-3 aC Å2

V-1
1.99 (0.16 2.85 (0.19 eq 15

∆r|

terms
2,3h

10-3 aC Å2

V-1
-10.1 (1.8 -5.6 (2.9 eq 15

B|/M Å2 V-2 -0.18 (0.06 -0.03 (0.09 eq 18

a Uncertainties forM, ∆µ, ∆r|, and A| were calculated from the
original data; uncertainties forV3 andV4 are those published in ref 35.
b Masses are from normal mode calculations, as described in the text.
c Uncertainties were found as described in the text.d This calculation
requiresV2′ andV3′, as minor corrections.V3′ was taken from ref 10.
Table 1 was first calculated with an approximate value forV2′, allowing
V2′ to be calculated from eq 14; the table was then iteratively improved
until a consistent value ofV2′ was achieved.e Anharmonicity contribu-
tion to ∆µ from eq 14.f Electronic polarizability contribution toA|

from eq 17.g Seventh term of∆r| from eq 15.h Sum of second and
third terms of∆r| from eq 15.
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substituted back into the data analysis to further refine all the
values, but the improvement would be well within the experi-
mental uncertainty.

Analysis of Mononitriles. A single mode analysis of a variety
of aliphatic and aromatic mononitriles, results of which are
shown in Table 2, yields the same overall picture as that found
above. Because the experimental data for most of the molecules1

was collected without varying the angle between the applied
electric field and the light polarization, similar data were used
for acetonitrile and 4-chloro-benzonitrile to allow meaningful
comparisons. Figure 1 shows the correlation of∆µ with q for
all the nitriles, along with the least squares best fit line, which
has a slope of 0.012 Å and an intercept of-3.2× 10-4 aC Å.
The dashed line shows the anharmonicity contribution of∆µ;
it has a slope of 0.0072 Å, computed from the first term of eq
14 and anharmonicity data for HCN.35 As before, anharmonicity
accounts for roughly half of the difference dipole.

Multi-Mode Analysis of Acetonitrile. A more thorough
analysis of acetonitrile is presented in Table 3, using mass-
weighted normal coordinates and published anharmonicities for

the four normal modes withA1 symmetry.41 For the nitrile stretch
mode (mode 2), the dipole gradient was calculated from our
experimental results because this is more accurate for the
environment in which the Stark data were taken, whereas the
published dipole gradients41 were used for the other modes. The
experimental nitrile dipole gradient was 17% larger than the
corresponding published value, indicating that the other dipole
gradients are likely to be reasonably accurate as well. In
agreement with the single mode analysis above, it is found that
40% of ∆µ arises from anharmonicity in the nitrile mode.
Anharmonic coupling to the other modes (Viij in eq 34) adds
another 10% to the total anharmonicity contribution: 7% is from
coupling to the symmetric C-H bend mode, 3% is from the
C-C stretch mode, and 0.3% is from the symmetric C-H
stretch mode. As a result, the value forv22′ (denotedV2′ in the
single mode theory) is somewhat less than previously calculated;
it is still parallel to thez-axis but has a corrected value of 1.9
× 10-3 Å V-1 fs-2 in mass-weighted coordinates, and 0.21 aC
Å-1 in physical coordinates.

The physical origin of the transition polarizability was also
investigated using the multi-mode theory. Several small terms
were ignored in this calculation, including terms involvingVijk

where i * j * k and vij ′ with i * j. These values cannot be
calculated from our data, are unavailable in the literature, and
are also expected to be even smaller thanViij and vii ′, terms
which are available and which provide extremely small con-
tributions toA. Ignoring these probably negligible corrections
yields the result that over 99% of the transition polarizability
arises fromv2′′, as found with the single mode theory.

It was found experimentally that the transition polarizability
has a significant perpendicular component1, which was initially
attributed to a nonconserved line shape arising from interaction
with the Fermi resonant band 50 cm-1 to higher energy.
Although this is possible, it was rationalized on the incorrect
understanding thatA could not have perpendicular components
for a rotationally symmetric system. Instead, it is probable that
A does have perpendicular components, which arise from
perpendicular components ofvi′′, a term which represents a
change of molecular electronic polarizability with motion in the
i’th normal mode. Like all molecules, acetonitrile is polarizable

TABLE 2: Potential Energy Matrix Components (eq 3) for
Mononitrilesa

compound
κ

aJ Å-2
q b

aC
V2′

aC Å-1
V1′′

aC Å V-1

∆r|

terms 2,3c
10-3 aC
Å2 V-1

acetonitrile 20.32d -0.0543 0.254 -0.096 -12.3
propionitrile 19.85 -0.0517 0.284 -0.093 -11.0
butyronitrile 19.90 -0.0529 0.291 -0.095 -7.9
valeronitrile 19.78 -0.0602 0.239 -0.041 1.2
hexanenitrile 19.84 -0.0522 0.286 -0.045 -7.7
acetonitrile-d3 19.87 -0.0582 0.258 -0.107 -17.0
benzonitrile 19.43 -0.0858 0.295 -0.178 -11.5
2-Cl-benzonitrile 19.73 -0.0652 0.286 -0.157 -7.1
3-Cl-benzonitrile 19.74 -0.0666 0.301 -0.148 -5.3
4-Cl-benzonitrile 19.70 -0.0830 0.296 -0.175 -6.2
4-methoxybenzonitrile 19.58 -0.1153 0.428 -0.17 -1.6

a Computed using Stark effect data from ref 1, anharmonicity data
from ref 35, masses from AM1 calculation, and using the single mode
theory (eqs 13-18). b See noted of Table 1.c Sum of second and third
terms of∆r| expression in eq 6.d Fermi resonance corrected frequency
from ref 34.

Figure 1. Correlation of difference dipoles with effective charges for
mononitriles. Difference dipole data are from ref 1 and assume a local
field correction value of 1.1; effective charge data are calculated from
the transition dipole data in ref 1, using the single mode theory. Circles
represent aliphatic compounds, numbered as: 1. acetonitrile, 2.
propionitrile, 3. butyronitrile, 4. valeronitrile, 5. hexanenitrile, and 6.
deuterated acetonitrile. Squares represent aromatic compounds, num-
bered as: 7. benzonitrile, 8. 2-Cl-benzonitrile, 9. 3-Cl-benzonitrile, 10.
4-Cl-benzonitrile, and 11. 4-methoxybenzonitrile. The solid line is the
best fit to the data, with a slope of 0.0122 Å and an intercept of
-0.00029 aC Å. The dashed line, which has a slope of 0.0072 Å,
represents the expected difference dipole if only anharmonicity
contributed.

TABLE 3: (A) Multi-mode Analysis of Acetonitrile a (B)
Vector and Matrix Components of Acetonitrile Stark Effects

parameter unit
mode 1

CH stretch
mode 2

CN stretch
mode 3

CH bend
mode 4

CC stretch

(A) multi-mode analysis of acetonitrile
νj b cm-1 2292.7 2270.6 1390 915.4
ωi fs-1 0.5505 0.4277 0.2618 0.1724
µi 1011 aC

kg-1/2
-7.14b -5.53c -8.78b -0.32b

Vii2 10-3 aJ-1/2

fs-3
-0.179 -17.38 -0.706 -3.66

∆µ term 1d 10-6

aC Å
-3.13 -388.5 -66.9 -29.1

(B) vector and matrix components
of acetonitrile stark effects

∆µ term 1e 10-6 aC Å x: 0 y:0 z: -487.6
v22′ Å V -1 fs-2 x: 0 y: 0 z: 0.00192
v1′′ f 1011 aC Å V-1 kg-1/2 xx: -5.4 yy: -5.4 zz: -13.7

a Computed using Stark effect data from ref 1. Note that normal
coordinates are used here for molecular parameters. To convert to
physical coordinates, multiplyµi andvi′′ by mi

1/2, vij′ by mi
1/2mj

1/2, and
Vijk by mi

1/2mj
1/2mk

1/2, wheremi is the reduced mass of modei. m2 has
a value of 108.7× 10-28 kg. b Ref 41.c Computed from data in ref 1,
as described in text.d Anharmonicity contribution to∆µ from coupling
to each normal mode, using eq 34.e Total anharmonicity contribution
to ∆µ. f Off-diagonal elements are zero, by symmetry.
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on all axes, so it is expected that the polarizablility perpendicular
to the symmetry axis changes slightly with motion in the nitrile
stretch mode.

A final equation which can be checked experimentally is the
transition dipole of the overtone absorption, eq 38. It was
measured by taking the infrared spectrum of a neat sample of
acetonitrile at room temperature, integrating absorption peak
areas for both the fundamental and overtone bands, and
calculating the ratio of the areas divided by frequencies (M2 ∝
band area/ω). Multiplying the square root of this ratio by the
transition dipole for the fundamental mode given in Table 1
yields the experimentally determined overtone transition dipole
moment, with a value of 0.42× 10-3 aC Å. Because it is only
the ratio of the room temperature peak areas that is used, this
method is expected to account reasonably well for the sample
being neat and at room temperature, rather than dilute and at
low temperature like the rest of samples considered here. Using
eq 38 and values from Table 3, the calculated overtone transition
dipole is 0.43× 10-3 aC Å, in remarkably good agreement
with experiment.

Conclusions

Previous experimental results1,3 inspired many questions on
the physical origins of vibrational Stark effects, which are
addressed in this paper. Using the classic “balls and springs”
model, a detailed set of equations are derived for the Stark
effects of a single vibrational mode and a less detailed set are
derived for multiple vibrational modes. Comparison with
experiment yields insight into which molecular parameters
account for the different Stark effects and also yields numeric
values for several parameters which have not been measured
previously.

It is found that the dominant Stark effect,∆µ, which
represents the linear Stark tuning rate, arises from about half
mechanical effects and half electronic effects for a wide range
of nitriles. Mechanical effects are from bond anharmonicity (V3

or vijk) whereas electronic effects are from the effect of an
electric field on chemical bond strengths (V2′ or vij ′). In
acetonitrile, where a multi-mode analysis is possible, 40% of
∆µ arises from anharmonicity in the nitrile mode and 10% arises
from anharmonic coupling to other modes.

The transition polarizability,A, arises almost exclusively from
the gradient of the molecular electronic polarizability (V1′′ or
vi′′), a term which can also be interpreted as the field effect on
the effective charge. Because an electric field affects the electron
cloud distribution, and hence the partial charges on the atoms,
it also affects vibrational transition dipole moments. In aceto-
nitrile, an electric field perpendicular to the molecular axis is
found to affect the nitrile effective charge by 40% as much as
a field parallel to the bond axis. Although the value forA is
significant (and has a large effect on Stark spectral line shapes),
the higher order transition hyperpolarizability,B, is shown to
be much smaller and can be neglected for electric fields of 1
MV/cm.

The quadratic Stark shift,∆r, is found to be a sum of terms
arising from mechanical and electronic effects. Because all terms
are either high-order components of a Taylor expansion (eq 3)
or are products of low-order components,∆r is expected to be
small; this is in agreement with experiment, where∆r was
found to have a minimal effect on Stark spectra.∆r depends
to a significant extent on the product of the cubic anharmonicity
and the polarizability gradient, (V3V1′′). It also depends on two
other terms involving electronic perturbations (V3′ and V2′′),
whose effects cannot be separated but are shown to contrast ab
initio results.

The theories make several predictions for multiple transitions
and resonant transitions, of which only a couple can be analyzed
without more data. Stark effects for resonant transitions are
predicted to be dominated by linear combinations of the effects
for the uncoupled states, plus a minor coupling term for
difference dipoles, in good agreement with experimental results
for 15NO bound to myoglobin.42 It is also possible to calculate
overtone vibrational intensities from the same molecular pa-
rameters that contribute to∆µ (Vijk andvij ′); a prediction made
in this way for the nitrile overtone vibration of acetonitrile is
nearly identical to the experimental value. Although there are
no experimental data yet, it is predicted that difference dipoles
are additive for multiple transitions. For degenerate transitions,
Stark effects should be identical to those for nondegenerate
transitions if a normal mode representation is chosen which is
not coupled by an electric field.

The analytical theory presented explains nearly all of the
vibrational Stark phenomena seen to date with parameters that
are easy to interpret and that can be generalized to other systems.
Most of the parameters determined here have not been measured
in other ways and differ significantly from ab initio calculations.
This demonstrates the unique capabilities of vibrational Stark
spectroscopy, but also implies that the theory is largely untested.
In particular, it makes several predictions that have not been
verified, and for which experimental data are needed.

Acknowledgment. We thank Prof. Noel Hush for helpful
discussions and for drawing our attention to several mistakes
in a previous version of the manuscript. This work was
supported in part by a grant from the NSF Chemistry Division.

References and Notes

(1) Andrews, S. S.; Boxer, S. G.J. Phys. Chem. A2000, 104, 11 853.
(2) Park, E. S.; Andrews, S. S.; Hu, R. B.; Boxer, S. G.J. Phys. Chem.

B 1999, 103, 9813.
(3) Park, E. S.; Thomas, M. R.; Boxer, S. G.J. Am. Chem. Soc.2000,

122, 12 297.
(4) Hush, N. S.; Williams, M. L.J. Mol. Spec.1974, 50, 349.
(5) Gready, J. E.; Bacskay, G. B.; Hush, N. S.Chem. Phys.1978, 31,

467.
(6) Bauschlicher, C. W. J.Chem. Phys. Lett.1985, 118, 307.
(7) Andrés, J. L.; Duran, M.; Lledo´s, A.; Bertrán, J.Chem. Phys.1991,

151, 37.
(8) Hermansson, K.; Tepper, H.Mol. Phys.1996, 89, 1291.
(9) Reimers, J. R.; Hush, N. S.J. Phys. Chem. A1999, 103, 10 580.

(10) Reimers, J. R.; Zeng, J.; Hush, N. S.J. Phys. Chem.1996, 100,
1498.

(11) Martı́, J.; Lledós, A.; Bertrán, J.; Duran, M.J. Comput. Chem.1992,
13, 821.

(12) Gready, J. E.; Bacskay, G. B.; Hush, N. S.Chem. Phys.1977, 24,
333.

(13) Lambert, D. K.Phys. ReV. Lett. 1983, 51, 2233.
(14) Lambert, D. K.Phys. ReV. Lett. 1983, 50, 2106.
(15) Lambert, D. K.J. Chem. Phys.1988, 89, 3847.
(16) Bagus, P. S.; Nelin, C. J.; Muller, W.; Philpott, M. R.; Seki, H.

Phys. ReV. Lett. 1987, 58, 559.
(17) Dykstra, C. E.J. Chem. Educ.1988, 65, 198.
(18) Bishop, D. M.J. Chem. Phys.1993, 98, 3179.
(19) Hush, N. S.; Reimers, J. R.J. Phys. Chem.1995, 99, 15798.
(20) Wilson, E. B. J.; Decius, J. C.; Cross, P. C.Molecular Vibrations.

The Theory of Infrared and Raman Vibrational Spectra; Dover Publica-
tions: New York, 1955.

(21) Goldstein, H.Classical Mechanics, Second ed.; Addison-Wesley:
Reading, MA, 1980.

(22) Nesbitt, D. J.; Field, R. W.J. Phys. Chem.1996, 100, 12 735.
(23) Buckingham, A. D.Trans. Faraday Soc.1960, 56, 753.
(24) Fermi, E.Z. Physik1931, 71, 250.
(25) For a diatomic molecule,m ) m1m2/(m1 + m2) andq ) m(q1/m1

- q2/m2), wherem1, m2, q1, and q2 are the atomic masses and charges.
Although this simplistic picture is pedagogically useful,q is actually defined
by eq 3.

(26) Note that some papers (including this section) use physical atomic
displacements whereas others use mass-weighted coordinates, neccessitating
additional conversion factors.

476 J. Phys. Chem. A, Vol. 106, No. 3, 2002 Andrews and Boxer



(27) Lambert, D. K.Solid State Comm.1984, 51, 297.
(28) Sakurai, J. J.Modern Quantum Mechanics, Revised ed.; Addison-

Wesley: Reading, MA, 1995.
(29) Morse, P. M.Phys. ReV. 1929, 34, 57.
(30) Mathematica; 2.2.2 ed.; Wolfram Research, Inc.: Champaign, IL,

1994.
(31) Similar equations are presented in ref 19. To the same level of

approximation, the two sets of equations agree perfectly with the exception
of minor differences between the coefficients of theV3

2 terms in eqs 16
and 18. Although the origin of the discrepancy is not known, it has been
shown to have a negligible effect on the results presented here.

(32) This paper uses the convention that summation is implied for all
repeated indicies.

(33) MacSpartan; Wavefunction, Inc.: Irvine, CA, 1997.

(34) Duncan, J. L.; McKean, D. C.; Tullini, F.; Nivellini, G. D.; Pen˜a,
J. P.J. Mol. Spectrosc.1978, 69, 123.

(35) Strey, G.; Mills, I. M.Mol. Phys.1973, 26, 129.
(36) Kumar, A. P.; Rao, G. R.Sepctrochim. Acta Part A1997, 53, 2033.
(37) Kumar, A. P.; Rao, G. R.Spectrochim. Acta Part A1997, 53, 2041.
(38) Kumar, A. P.; Rao, G. R.Spectrochim. Acta Part A1997, 53, 2023.
(39) While only selected values for the∆r| terms are listed, the others

may be easily calculated from data in Table 1.
(40) Andrews, S. S. The Measurement and Physics of Vibrational Stark

Effects, Stanford University, 2001.
(41) Westlund, P.-O.; Lynden-Bell, R. M.Mol. Phys.1987, 60, 1189.
(42) Park, E. S.; Boxer, S. G.J. Am. Chem. Soc.2001, submitted.

Vibrational Stark Effects of Nitriles II J. Phys. Chem. A, Vol. 106, No. 3, 2002477


