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Glossary

Brownian dynamics A level of detail in which each
molecule is represented by a point-like particle and
molecules move in response to diffusion and collisions

Chemical Fokker–Planck equation (CFPE) Master
equation for well-mixed systems that corresponds
to the chemical Langevin equation

Chemical master equation (CME) Master equation for
the probability that the system has specific integer copy
numbers for each type of chemical species; it is exact
for a well-mixed system

Chemical Langevin equation (CLE) Approximate sto-
chastic differential equation for well-mixed systems
which is based on continuous Gaussian statistics

Direct method An implementation of the Gillespie algo-
rithm

Extrinsic noise In genetic noise studies, expression fluc-
tuations of a gene that arise from upstream genes or
global fluctuations

First-reaction method An implementation of the Gille-
spie algorithm

Gillespie algorithm Exact algorithm for simulating indi-
vidual trajectories of the CME

Hybrid algorithms Algorithms that are designed to effi-
ciently simulate systems that have multiple timescales

Individual-based spatial models Models that track indi-
vidual molecules as they diffuse or react
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Intrinsic noise Expression fluctuations of a gene that
arise from that particular gene

Jump process A process in which the system abruptly
changes from one state to another

Optimized direct method A computationally efficient
implementation of the Gillespie algorithm

Population-based spatial models Models that track how
manymolecules of each chemical species are in various
spatial compartments

Reaction channel A possible reaction between specified
reactant and product chemical species (the terminol-
ogy distinguishes this meaning from an individual re-
action event between single molecules)

Reaction-diffusion equation Deterministic partial dif-
ferential equation that combines mass action reaction
kinetics and normal chemical diffusion

Reaction-diffusion master equation (RDME) Chemical
master equation that accounts for diffusion as well as
reactions

Reaction rate equation (RRE) Deterministic ordinary
differential equation for the net production rate of
each chemical species from chemical reactions

Spatial chemical Langevin equation Chemical Langevin
equation that accounts for diffusion as well as reactions

Stochastic simulation algorithm (SSA) Alternative term
for the Gillespie algorithm

Stoichiometric matrix (�) Matrix that gives the net pro-
duction of each chemical species, for each chemical re-
action

Tau-leaping method Approximate simulation method
for well-mixed systems in whichmolecule numbers are
updated using discrete Poisson statistics

Well-mixed hypothesis Assumption that mixing pro-
cesses occur faster than the relevant reaction processes

Definition of the Subject

Many processes in cell biology, such as those that carry
out metabolism, the cell cycle, and various types of sig-
naling, are comprised of biochemical reaction networks. It
has proven useful to study these networks using computer
simulations because they allow us to quantitatively inves-
tigate hypotheses about the networks. Deterministic sim-
ulations are sufficient to predict average behaviors at the
population level, but they cannot address questions about
noise, random switching between stable states of the sys-
tem, or the behaviors of systems with very few molecules
of key species. These topics are investigatedwith stochastic
simulations. In this article, we review the dominant types
of stochastic simulation methods that are used to investi-
gate biochemical reaction networks, as well as some of the

results that have been found with them. As new biological
experiments continue to reveal more detail about biolog-
ical systems, and as computers continue to become more
powerful, researchers will increasingly turn to simulation
methods that can address stochastic and spatial details.

Introduction

Random events are ubiquitous throughout biology. Diffu-
sion, chemical reactions, gene expression, homologous re-
combination, and most other fundamental biological pro-
cesses are governed to a large extent by the inherently dis-
crete and stochastic interactions of molecules [1]. In many
cases, the random events that occur on very small length
and time scales become averaged out when one focuses
on larger length or time scales. However, there also exist
many examples in which stochastic fluctuations at small
scales propagate up to and then influence the system be-
havior at large scales. Examples range from the swimming
trajectories of individual bacteria all the way up to the ge-
netic diversity on which evolution depends.

Research on stochasticity in biochemical systems has
received a great deal of attention lately, leading to many
recent reviews [2,3,4,5,6,7,8,9]. One reason for its popular-
ity is that the basic designs of many biochemical systems,
such as metabolism, cell division, and chemotaxis, are be-
coming reasonably well understood. Starting from this un-
derstanding, researchers are delving deeper to examine
the quantitative behaviors of these systems, including the
roles of stochastic influences. Also, there is an increasing
awareness of the importance of stochasticity in biologi-
cal systems. For example, it has become clear that noisy
gene expression is the rule rather than the exception [9];
this leads to important questions about non-genetic in-
dividuality and about biological robustness to gene ex-
pression noise. Thirdly, stochasticity is often investigated
using computationally demanding simulations. Cheaper
and faster computers, as well as improved simulation al-
gorithms, are making it feasible for researchers to inves-
tigate more complex biochemical systems, at increasingly
realistic levels of detail. Finally, and perhaps most impor-
tantly, the last ten years have witnessed incredible progress
in experimental biochemical methods, some of which al-
low direct measurements of stochasticity on microscopic
size scales. These methods include gene expression mea-
surements [10,11], flow cytometry [12,13,14,15,16], sin-
gle molecule detection methods [17,18,19,20], and appli-
cations of synthetic biology [21].

At the most fundamental level, the quantum mechan-
ics that describe the dynamics of all physical systems are
well-understood and completely deterministic [22]. It is
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Stochastic Models of Biological Processes, Figure 1
Simulation results for a simple chemical oscillator using different simulation methods. The Lotka–Volterra system is shown, which
shares key features with cellular oscillators such as circadian rhythms. Insets show the spatial distributions of molecules at the indi-
cated times. In the top panels, note that stochasticity allows the system to drift to large amplitude oscillations and that the Langevin
and Gillespie methods yield similar results. In the bottom panels, all of which were started with nearly homogeneous initial states,
differences arise from the approximations: the PDE simulation has predictable oscillations due to the minimal stochasticity (which is
only in the initial state); the Gillespie simulation has larger peaks than the Langevin one because it only allows integer numbers of
molecules in each bin; and the particle tracking simulation shows larger and fewer bursts than does the Gillespie simulation because
it accurately treats diffusion at all length scales (this difference was reduced with a spatial Gillespie simulation that used smaller
subvolumes). Parameters: rate constants are 10min�1, 8000nm3 molec�1 min�1, and 10min�1, for the respective reactions shown
in the top-right corner, systems start with 100 of each blue and red molecules, their diffusion coefficients are 100nm2 min�1, the
volume is 100nmhigh andwide by 10 nmdeep, and the first three spatial simulations divide this volume into cubic subvolumes that
are 10nm on a side. This figure is reproduced from [8]

only when systems are observed that there arises unavoid-
able randomness, although these aspects of quantum me-
chanics remain murky and as close to philosophy as sci-
ence. More importantly, essentially any system that is gov-
erned by nonlinear dynamics, including nearly all phys-
ical systems, rapidly becomes chaotic as the system size
is increased beyond a few molecules, and thus becomes
effectively unpredictable [23]. For all intents and pur-
poses, the diffusive trajectories of individual molecules,
and the probabilities of chemical reactions occurring be-
tween neighboring reactants at specific times, are funda-
mentally stochastic.

In the laboratory, partly by design, this stochastic-
ity usually averages out. For systems comprised of many
particles, diffusion is observed to be described well by
Fick’s law of diffusion and chemical reaction kinetics are
described well by the deterministic reaction rate equa-
tions [24]. The situation is often different within biolog-

ical cells for several reasons: (i) the program for cellular
behavior, the genome, is present at low copy number and
yet each gene governs the expression of possibly thousands
of proteins, (ii) the low copy numbers of many proteins
and mRNA transcripts within cells make random varia-
tion of their numbers a relatively large fraction of the to-
tal, (iii) stochasticity is often amplified during sequential
biochemical steps, of which an especially important case
is the sequence of DNA transcription followed by mRNA
translation, and (iv) because of spatial organization within
cells, it often takes very few proteins in specific locations
to achieve large effects on the entire cell dynamics.

This review provides a broad account of stochastic
modeling of biological processes. The emphasis is placed
on stochastic processes at the cellular level although much
of the work presented here also applies to other scales and
systems. Our goal is to briefly familiarize the reader with
the mathematical forms of the most important equations,
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the tools for analyzing and simulating them, and some ap-
plications for which they have been particularly success-
ful. As shown below, the mathematics, the software imple-
mentation, and even the applications of modeling meth-
ods are often closely linked.

There are several ways to categorize stochastic bio-
chemical modeling methods. A key designation is whether
a method is spatial or non-spatial: spatial models treat
spatial organization of proteins and membranes explic-
itly, whereas non-spatial models include an implicit as-
sumption that mixing processes occur faster than the rele-
vant reaction processes, which is called the well-mixed hy-
pothesis. No single modeling method can efficiently cap-
ture stochastic dynamics over wide ranges of time scales,
so separate methods have been developed that operate at
levels of temporal detail that range from nanoseconds to
hours. Hybrid simulators combinemethods that operate at
different timescales to allow the efficient simulation of sys-
tems that include both fast and slow processes. Whereas
many modeling methods are designed solely to address
the reactions in a biochemical reaction network, others
also consider system boundaries, mechanics, or the mul-
tiple states that proteins can be in. Here, we present non-
spatial modeling methods first, followed by spatial meth-
ods, with diversions along the way to touch on as many of
the other topics as possible. Simulation results from many
of the methods that are discussed are compared in Fig. 1,
where it is seen that the differences can be quite significant.

Non-Spatial StochasticModeling

Deterministic Modeling and Notation

Before focusing on stochastic modeling, it is helpful to in-
troduce the notation and some terminology by summa-
rizing a few aspects of deterministic modeling. As applied
to chemical reaction networks, deterministic modeling is
based upon ordinary differential equations (ODEs) for the
individual chemical reactions. Consider the generic ele-
mentary reversible reaction

AC B
kf
•
kr

C ; (1)

where kf and kr are the forward and reverse reaction rates,
respectively.We assume that the system is kept well-mixed
so that diffusion effects can be ignored. The reaction rate
equations for components A, B, and C are the ODEs

d[A]
dt
D

d[B]
dt
D �kf[A][B]C kr[C] ; (2a)

d[C]
dt
D kf[A][B] � kr[C] : (2b)

More complex reaction networks are expressed analo-
gously, with one equation for each chemical species and
with terms in the equations that represent chemical re-
actions. From these equations, the reactions can be sim-
ulated to show how the concentrations change over time.
Or, after setting the left sides of the equations to zero, they
can be solved to yield the steady-state chemical concentra-
tions. One can also investigate the dynamic or steady-state
behaviors as the reaction rate parameters (kf and kr), or
initial concentrations, are varied [25]; this can yield phase
diagrams for the reactions and additional insight.

It is helpful to generalize the rate equations given
above to make them more convenient for computational
or analytical work and to show their forms more clearly.
First, each chemical concentration is replaced by the vari-
able Zi(t), where i is an index for A, B, or C and the
time-dependence is written out explicitly. Next, the prod-
uct terms in the equations are replaced by the functions
ãf(Z(t)) and ãr(Z(t)) for the forward and reverse reac-
tions, respectively; the tildes indicate that molecule quan-
tities are given as concentrations rather than as molecule
numbers. These functions are called the reaction propen-
sities. Finally, the ‘+’ or ‘–’ signs show the reaction stoi-
chiometry. They are replaced by �fi and �ri for the for-
ward and reverse reactions, respectively, which are ele-
ments of the so-called stoichiometric matrix (throughout
this review, we follow Gillespie’s notation [6]). In this ex-
ample, one unit of each A and B are lost in a unit amount
of forward reaction (�fA D �fB D �1) as one unit of C is
formed (�fC D 1); the �ri values have the opposite signs.
With these substitutions, the rate equations become

dZi(t)
dt

D �fi ãf(Z(t))C �ri ãr(Z(t)) ; (3a)

ãf(Z(t)) D kfZAZB ; (3b)

ãr(Z(t)) D krZC : (3c)

These equations are trivially extended to arbitrarily
large reaction networks. Consider a system with N chemi-
cal species that can react viaM different reaction channels
(a “reaction channel” is simply unambiguous terminology
for a reaction between specific reactant and product chem-
ical species). The dynamics of this system are given with
the reaction rate equation (RRE):

dZi(t)
dt

D

MX

jD1

� ji ã j(Z(t)) : (4)

The reaction propensity equations are typically the prod-
ucts of reaction rate constants and the appropriate chem-
ical concentrations, as shown above (Eq. (3b) and (3c)),
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but they may also describe non-elementary processes such
as Michaelis–Menten kinetics. It is worth noting that the
state of the system, at any point in time, is fully expressed
with the vector Z(t). This means that the entire trajectory
of the system can be deterministically calculated from the
RRE and any single Z(t) snapshot.

The RRE is at the heart of many branches of quanti-
tative biochemistry and systems biology. A great deal of
metabolic theory is based on either the steady-state so-
lutions of the RRE, or the set of steady-state solutions
that are possible, given only knowledge of the stoichio-
metric matrix [26,27,28,29]. Studies of biochemical os-
cillations [25], including the cell cycle [30,31], circadian
rhythms [32,33], and certain spatial patterns [34,35] are
usually based on the dynamics of the deterministic RRE.
Research on biochemical switches, as are found in prion
diseases [36], developmental processes [37], and some
protein kinase cascades [38], often focuses on the multi-
ple steady-state solutions of the RRE [39]. Deterministic
modeling has been, and still is, the conventional modeling
method for most biological systems.

The Chemical Master Equation

Although the RRE is tremendously useful, it cannot ad-
dress the stochastic processes that are inherent to bio-
chemical systems. This is because the RRE arises from
a series of approximations to a more physically rigorous
stochastic model of chemical reactions [40,41].

As above, we assume that diffusive processes are much
faster than reactive ones [8], which allows us to ignore
spatial organization (this assumption is usually valid for
genetic and metabolic networks, but often invalid for
signaling networks). Nevertheless, the stochasticity of dif-
fusion plays an essential role because it makes the precise
timing of individual reactions effectively random. These
reactions occur in abrupt transitions, in which reactants
are converted effectively instantaneously into products,
making this a type of jump process. Also, random diffusion
causes the system to rapidly lose any memory of its prior
states, and thus of the sequence of reactions that led up to
the current state. This independence of the system dynam-
ics on its history, called the Markov property, implies that
the probability that a specific reaction occurs depends only
on the state of the system at that time [41].

Because of the random reaction timing, reactant con-
centrations do not follow the deterministic trajectory that
is predicted by the RRE. Instead, many concentration tra-
jectories are possible, of which a single effectively random
one actually occurs. There are two primary ways to inves-
tigate the possible trajectories with computational meth-

ods. One can simultaneously track the probability of every
possible outcome or one can simulate many independent
stochastic trajectories and then analyze them as one would
with several repetitions of an experiment. These methods
are described in this and subsequent sections, respectively.

To mathematically track the probability that the sys-
tem is in each possible state, it is helpful to first replace the
vector of chemical concentrations that was introduced ear-
lier, Z(t), with a vector of integer-valued molecule num-
bers, X(t). These are related to each other, within round-
off error, through the volume of the system, which is given
as˝ ,

X(t) ' ˝Z(t) : (5)

The state of the stochastic system is fully captured by X(t).
The probability that the system is in state x at time t,
given that it started in state x0 at time t0, is written as
P(x; t j x0; t0). This probability changes over time because
chemical reactions can transfer the system either into this
state from other ones, or out of this state and into others.
These possible transitions are combined to yield the chem-
ical master equation (CME) [6,42]:

@P(x; t j x0; t0)
@t

D

MX

jD1

h
a j(x � � j) P(x � � j; t j x0; t0)

�a j(x) P(x; t j x0; t0)
�
: (6)

The sum is over the reaction channels that can occur in
the system. The two terms within brackets give the rate
at which the probability of being in state x increases or
decreases over time because of reactions into or out of
state x, respectively. These are proportional to the reac-
tion propensities for the respective reactions. They are also
proportional to the probability that the system was in the
starting state, because the system can only leave a state if it
was there in the first place.

The reaction propensity a j(x), given here without
a tilde because it is for molecule numbers rather than con-
centrations, is a probability density: a j(x)dt is the proba-
bility that exactly one reaction of type j will occur in a sys-
tem in state x within the next dt amount of time. This
microscopic propensity function is as central to stochas-
tic chemical kinetics as its macroscopic analog is to the
reaction rate equation. However, the microscopic propen-
sity rests on a solid microphysical basis, and has in fact
been shown to have an exact solution for a well-stirred
thermally-equilibrated gas-phase system [43]. For such
a system, the propensity function is

a j D hj c j ; (7)
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where hj is the number of distinct combinations of indi-
vidual reactants for reaction j and cj is the probability den-
sity for one of those reactions to occur. That is, c j(t)dt is
the probability that a randomly selected set of reactants
for reaction j will collide and react in the next infinitesi-
mal time interval dt. For a variety of reaction mechanisms,
the cj values can be calculated quite accurately from only
the physical properties of the system [43].

The primary approximation made for the CME is
that the reactive system is well-mixed. This implies both
that there is no spatial organization and that there are
no significant correlations between successive reactions
(the Markov property). Examples of correlated reactions
include metabolite channeling, which is the transfer of
a metabolite from one enzyme to the next before it has
a chance to equilibrate into the cytoplasm [44], and gemi-
nate recombinations, which aremultiple bindings between
molecules that bind reversibly [45]. The well-mixed state-
ment also encompasses the assumption that the system is
isothermal, which is typically the case in biological sys-
tems.

Because the CME becomes computationally in-
tractable with any but the simplest systems, some recent
work has focused on efficient solution methods. An al-
gorithm called the finite state projection method accom-
plishes this by projecting a matrix form of the CME onto
a smaller space [46,47]. By choosing the size of the pro-
jection space, the accuracy can be adapted to any level
of precision. Less formal methods for state-space reduc-
tion of the CME have been proposed as well [48]. Another
method uses a sparse grid, which can work efficiently for
up to 10 proteins [49].Work has also gone into separations
of the CME into fast and slow components, as described in
the section on hybrid methods [42,50,51].

Applications of the Chemical Master Equation

The solution of the CME suffers from the so-called “curse
of dimensionality” as the size of the state space, and hence
the number of equations, increases exponentially with the
number of chemical species involved. Except for very small
and simple systems, it is extremely difficult to obtain solu-
tions of the CME, either analytically or numerically. How-
ever, a few papers do report quite interesting results from
direct simulations of the CME.

The master equation was used to investigate the
dynamics of transiently denatured segments of double
stranded DNA [52]. The authors derived the dynamics,
formation rates, and lifetimes of these “bubbles”, which
can be compared to fluorescence correlation microscopy
experiments of fluorescently tagged base pairs [53]. In

another use of the CME, studies on molecular mo-
tors [54,55] demonstrate how the load-velocity curve, in-
cluding rectified motion, arises from nucleotide triphos-
phate binding free energies. These works more fully inves-
tigate ideas on thermal ratchets that were presented pre-
viously [56]. A particularly intriguing study on the copy
number control system for bacterial plasmids [57] showed
that stochasticity in a regulatory portion of a system can
actually decrease the stochasticity elsewhere in the sys-
tem. This “stochastic-focusing” changes the behaviors of
gradual-response systems towards those of threshold sys-
tems [58,59] in a manner that is analogous to the oscil-
lation enhancement that stochastic resonance can create
in oscillating systems [60]. These results contradict the
widely held belief that an increase in stochasticity in one
portion of a system will necessarily increase the stochas-
ticity everywhere downstream of it. Studies of simple sig-
nal transductionmotifs have shown how the predictions of
the RRE can be qualitatively wrong compared to the CME
treatment in that the stochastic systems might be bistable
or oscillate when the deterministic system has one stable
state [40,61]. Many of these studies that used the CME
also used other theoretical techniques as well, which allow
fruitful comparisons between the methods.

The Gillespie Algorithm

Because of the challenges in working with the CME, it is
most often investigated using a Monte Carlo approach in
which individual sample trajectories are simulated. These
simulations can be exact or approximate. In this context,
“exact” means that if the simulation were run many times,
the distribution of simulated trajectories would agree ex-
actly with that which would be predicted by an analytical
solution, were it obtainable, of the chemical master equa-
tion. Exactness implies nothing about the validity of the
CME or about the limitations of the computational accu-
racy (such as round-off errors and imperfect pseudo-ran-
dom number generators), but only that no further approx-
imations are made beyond those that are assumed by the
CME.

In 1976, Gillespie introduced an exact algorithm for
simulating the CME [6,62,63] which is called the stochas-
tic simulation algorithm (SSA) in his papers, but is bet-
ter known as the Gillespie algorithm. This algorithm cycles
through three portions: (i) generate the time step until the
next reaction, (ii) determine which reaction that will be,
and (iii) execute the reaction by advancing the time and
molecule counts to reflect it. The Gillespie algorithm was
introduced with two varieties, called the direct method and
the first-reaction method. In the former, the time step to
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the next reaction, � , and the reaction number, j, are cho-
sen from the following probability distributions:

P(�) D ae�a� ; (8a)

P( j) D
a j(X)
a

: (8b)

The variable a represents the summed reaction propensity,

a �
X

j

a j(X) : (8c)

In the first-reaction method, a time step, � j , is generated
for each possible reaction channel. Again, these are expo-
nentially distributed random numbers,

� j D a j(X) e�a j(X)� : (9)

The smallest of these time steps is chosen as the next sim-
ulation time step, while its subscript dictates the reaction
channel that is executed at that time. The direct method is
usually preferred because it is a little easier to program and
runs slightly faster with a simple implementation. How-
ever, the latter has been favored as a basis for improve-
ments on computational efficiency.

The exactness of the Gillespie algorithm comes at the
cost of its being computationally demanding. Even if one
simulation can be performed reasonably quickly, such as
in a few minutes, this can still be too slow to investigate
the behaviors of hundreds of mutant cells or to explore
different regions of parameter space. Thus, much effort
has been devoted to improving the efficiency of the Gille-
spie algorithm, while still maintaining exactness. These
methods are all based upon either the direct method or
the first-reaction method, but are carefully designed, usu-
ally with priority queues or other indexing methods, so
that internal variables are recalculated as infrequently as
possible [6,64,65,66,67]. Of these, it appears that the op-
timized direct method is probably best for most practical
problems [66]. Because the faster methods are significantly
more difficult to program than the original ones, both sets
of methods are still commonly used.

The computational intensity of the Gillespie algo-
rithm, even with more efficient implementations, makes
it difficult to perform sensitivity analyzes. In these ana-
lyzes, one investigates the extent to which the results de-
pend upon input parameters, which can helpful for de-
termining which parameters need additional experimental
investigation or which are particularly important for sys-
tem control. An algorithm for stochastic sensitivity analy-
sis was recently developed and applied to biochemical re-
action networks [68]. It involves the addition of just two
steps to the basic loop of the Gillespie algorithm.

Another difficulty of the Gillespie algorithm, which
also applies to simulations of the RRE and other algo-
rithms presented below, is called combinatorial explo-
sion. Suppose a scaffold protein has several sites with
which it can bind other proteins, and suppose that each
of those proteins can bind to none, one, or two phos-
phate groups (this is the situation for the Ste5 protein in
the yeast pheromone response pathway [69]). There are
clearly a tremendous number of possible binding states
that the scaffold protein can be in, each of which has to
be treated as a separate chemical species. Just listing all of
these states is tedious, and simulating their reaction dy-
namics with the Gillespie algorithm is very slow. One so-
lution is to not list every possibility when the simulation
starts, but to create states when they are needed and to de-
stroy themwhen they are no longer required [65]. Another
option is to use an algorithm that is implemented in a pro-
gram called StochSim [70,71]. Unlike the Gillespie algo-
rithm, this one does not stochastically choose reactions to
execute, but it instead chooses reactant pairs from the pool
of existing molecules. A probabilistic scheme is used to de-
termine if these reactants should be made to react with
each other.

What if the system volume changes as a function of
time? This might seem like an unusual concern, but it oc-
curs during cell growth (and cell division) and it affects
the reaction propensities. The necessary modifications to
the Gillespie algorithm were recently derived, which are
likely to be particularly useful for relatively slow processes,
such as protein production from infrequently expressed
genes [72].

Applications of the Gillespie Algorithm

Models based on the Gillespie algorithm have provided
critical insights into the stochastic nature of gene expres-
sion [3,73,74]. In particular, fluctuations in the rates of
gene transcription are amplified at the translation stage
to yield highly erratic time patterns of protein produc-
tion [75]. When multiple regulatory proteins act together,
or compete with each other, this randomness is ampli-
fied further because of the random sequence of protein
bursts [75]. These effects were shown to stochastically
switch a model of phage- between the bistable lysis and
lysogeny states [76], with results that are consistent with
experimental ones. Stochastic gene expression is also used
by many pathogenic organisms to randomly switch their
surface features so they can evade host responses [77],
may be used by the HIV virus to stochastically delay vi-
ral expression long enough for transformation of its acti-
vated T-cell host to a memory cell and thereby trap HIV
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as a latent phage [16], can establish asymmetries that de-
termine cell differentiation [78], and can cause circadian
clocks to lose synchrony [21,79]. In fluctuating environ-
ments, stochastic gene expression can permit an isogenic
bacterial population to grow faster than it would if all in-
dividuals were phenotypically homogeneous [77,80,81].

From combined modeling and experimental ap-
proaches, the dominant noise sources in the stochastic ex-
pression of a specific gene are: (i) the expression fluctu-
ations of that particular gene, which is called the intrin-
sic noise, (ii) noise that is transmitted to it from upstream
genes, and (iii) global noise that affects all genes. The lat-
ter two sources are often combined and called extrinsic
noise, which is the total noise source that is extrinsic to
that specific gene [12,74,82,83,84]. Noise arises at both the
transcription and translation stages, for which the relative
importance depends on the strength of the promoter and
on whether prokaryotic or eukaryotic transcriptional ma-
chinery is used [14,15,75,85,86]. Direct measurements of
gene expression have generally confirmed the predictions
made by stochastic simulations [11,12,13,15,17,18,21,87].

Gene expression appears to be unavoidably stochastic,
and this randomness is usually amplified at each stage, so
how does biology function reliably amidst all the noise?
This is a central topic of many papers on biological robust-
ness [5,9,88,89,90,91], several of which use the Gillespie al-
gorithm or other types of stochastic modeling. One answer
is that many reaction network structures are inherently
less susceptible to noise than others. These include ones
in which the reaction rates do not depend on the num-
ber of mRNA transcripts [92], certain scale-free reaction
networks [93], and networks that are designed to function
near saturation [94] (analogous to binary logic). Secondly,
there are several mechanisms for biological robustness to
noise, including negative feedback, integral feedback [95],
checkpoints, and redundancy [9]. Because gene expression
noise is usually detrimental to biological function, it has
been suggested that there is active selection for robustness
mechanisms [96,97].

Approximate Stochastic Methods

Because every reaction is simulated individually in the
Gillespie algorithm, it is unavoidably computationally de-
manding, even with the algorithmic methods that have
been developed to speed it up. To address this, several ap-
proximate methods have been developed.

The most accurate of these approximate methods is
called the tau-leaping method [6,98,99,100]. In contrast to
the Gillespie algorithm, the �-leapingmethod uses a simu-
lation time step which is long enough thatmany individual

reactions are likely to occur during the time interval. The
reaction propensities ought to change slightly as each re-
action occurs to reflect the new chemical populations, al-
though this algorithm uses the assumption that changes
within a single time step are negligible. This is the sole
approximation made for the �-leaping method. Each re-
action is considered to be an independent event (a conse-
quence of both the well-mixed hypothesis and the constant
reaction propensities), so the number of reactions that oc-
cur during time step � for reaction channel j is a Pois-
son-distributed random variable; it is denoted kj and has
a mean value equal to the reaction propensity a j(X(t)).
The formula used by �-leaping that updates the system
state over one time step is

X(t C �) D X(t)C
MX

jD1

k j� j : (10)

The algorithm alternates steps in which the state of the sys-
tem is updated and those in which new reaction propensi-
ties are calculated.

As the time step is reduced to zero, the �-leaping sim-
ulationmethod approaches that of the Gillespie algorithm,
although with more computational overhead. In the other
direction, increasing the time step makes the simulation
becomes more and more approximate. It has been sug-
gested that � should be chosen by first predicting the
change in molecular populations over time using deter-
ministic methods; then, the time step is chosen so that no
molecular species is likely to change its population dur-
ing this time step by more than some pre-determined frac-
tion of its total population [98]. A difficulty that can occur
with �-leaping (which is also an issue with ODE integra-
tion), is that it is possible for a molecular species to be as-
signed a negative population. Several methods have been
proposed to avoid this problem, some of which are also
able to improve the performance of the algorithm in other
ways as well [101,102,103]. Despite several papers on the
development of �-leaping, this method has yet to be ap-
plied to novel biological problems.

Two additional approximations allow the application
of many more theoretical methods. First, the vector that
defines the state of the system, X(t), is allowed to take on
real values as well as integer values. As one would expect,
this is usually a reasonable assumption for large chemical
populations and a poor assumption for low copy num-
bers. In particular, it can a very poor approximation in
cases where there might become no copies of a chemical
species at all; an approximate value of, say, 0.01 protein
copies can lead a system to entirely different outcomes
than one would find with exactly 0 copies. The second
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approximation is to replace the Poisson-distributed ran-
dom variables that were used in the �-leaping algorithm
with Gaussian-distributed random variables [104]. The ef-
fect of this change again decreases as the copy numbers of
chemical species are increased. It also decreases as longer
time steps are used because that leads to more individual
chemical reactions per time step. These approximations
allow the updating equation of the �-leaping algorithm to
be replaced by a stochastic differential equation called the
chemical Langevin equation [105,106,107] (CLE),

dXi(t)
dt

D

MX

jD1

� ji a j(X(t))C
MX

jD1

� j(t) � ji
q
a j(X(t)): (11)

The first term is simply the reaction rate equation that
is given above (Eq. (4)), but for molecule counts rather
than concentrations. The second term addsGaussian noise
to the deterministic result, where � j(t) represents a tem-
porally uncorrelated, statistically independent Gaussian
white noise with mean 0 and variance 1. In other words,
the integral of � j(t) is a one-dimensional continuous
random walk. The chemical Langevin equation describes
a continuous Markov process which is an approximation
of the jump Markov process that underlies the chemi-
cal master equation. Simulations with the CLE, which are
based on an equation that is quite similar to Eq. (11) [106],
yield single stochastic trajectories of the system state,
much like simulations with the Gillespie algorithm or the
�-leaping method.

Alternatively, instead of following a single system as
it moves along one of its many possible stochastic trajec-
tories, it is possible to focus on a single portion of the
state space to see how likely it is that the system will be
in this region of state space as a function of time. This lat-
ter picture is described by chemical Fokker–Planck equa-
tion [41,105,107] (CFPE),
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The first term, often called the drift term, arises from
the deterministic behavior of the system. The latter two
terms, collectively called the diffusion term, represent the
stochastic deviations away from deterministic behavior.
Because the CFPE represents continuous processes, it is
significantly more analytically tractable than the chemical
master equation.

To compute the probabilities of possible system behav-
iors using the CFPE, state space is usually discretized into
a grid and then the CFPE is integrated using standard nu-
merical methods [108,109]. This analysismethod is similar
to that employed for the CME, but is usually less compu-
tationally demanding because the discretized state space
is typically significantly coarser. Nevertheless, the dimen-
sionality of state space still increases exponentially with
additional chemical species, so the CFPE still suffers from
the curse of dimensionality.

Applications of Approximate Stochastic Methods

Perhaps because stochastic simulations are still a rela-
tively new field of study, many studies with the CLE and
CFPE focus more on the mathematical techniques than on
the biological applications [109,110,111,112,113]. The ap-
proximate CLE and CFPE have been shown to yield re-
sults that are in good agreement with exact simulations
for a reversible isomerization reaction, even with very few
molecules [107].

The CLE was used to analytically investigate the role
of noise-induced phenomena in enzymatic futile cycles,
which is a motif that is common to many biochemical net-
works [61]. The analysis indicated that the presence of ex-
ternal noise is sufficient to induce switching bistability in
the system, a phenomenon that is often attributed to feed-
back loops [25]. In combination with experimental data,
the CLE was also used to show that translational efficiency
is the predominant source of intracellular noise for a sin-
gle-gene system [15]. The Fokker–Planck equation has
been used to model cell growth [111,112] and cell migra-
tion [113,114]. Of particular interest, the Fokker–Planck
equation has provided a convenient framework to describe
the behaviors of molecular motors [109]. A motor protein
is approximated as a diffusion particle in a periodic asym-
metric free-energy surface. Under the input of chemical
energy, the motor switches stochastically between differ-
ent potentials that describe distinct biochemical states of
the motor. The model has been used to explain key exper-
imental observations for molecular motors, most notably
for the F1F0-ATPase system [115] and a bacterial flagellar
motor [109,116].
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Hybrid Algorithms

Systems that involve multiple time scales provide major
simulation challenges. If the fast time scale is simulated
with high precision, then the simulation takes too long
for the dynamics of the slow one to be observed with any
reasonable efficiency. On the other hand, if the simula-
tion time steps are optimized for the slow timescale, then
they are too long for the fast reactions and numerical er-
rors become problematic. In the language of differential
equations, these are stiff systems which require special so-
lution techniques. For stochastic simulationswithmultiple
timescales, several methods have been developed recently.

One class of hybrid methods focuses on new math-
ematics to allow approximations of the Gillespie algo-
rithm, or related algorithms, to function with reasonable
accuracy over a wide range of timescales [42,50,51,117,
118,119,120,121]. The other class generally involves the
coupling of multiple simulators, usually including ODE,
Langevin, and/or Gillespie; the high-population molecu-
lar species are simulated with less stochastic detail and the
low-population species are simulated with more stochastic
detail [122,123].

Spatial StochasticModeling

Most biological systems are highly organized. For exam-
ple, Escherichia coli bacteria have helical cytoskeletons, po-
lar-localized proteins, centrally positioned chromosomes,
and elaborate flagellar motor complexes. Eukaryotes are
even more organized, with elaborate organelles, micro-
tubules and other complex cytoskeletal elements, motor
proteins that shuttle back and forth, and carefully con-
trolled cell shapes. Even phages display remarkable or-
der in the way the DNA is packed into the outer shell.
Where does this order come from? And how does this
order influence the biochemical reaction network? These
questions are being investigated with new imaging experi-
ments [124,212] and with new computer simulationmeth-
ods that can account for spatial heterogeneity. These spa-
tial simulation methods are the focus of this section.

Spatial simulations have been used to investigate
a wide variety of topics. These include: morphogen gradi-
ents acrossDrosophila andXenopus oocytes [125,126,127],
the Escherichia coli cell division plane localization sys-
tem [128,129,130,131,132,133,134] (see Sect. “Box 1: The
E. ColiMin System”), intracellular signaling [135,136,137,
138], and rebinding of ligands to receptor complexes [139,
140,141].

As described above, many successful biochemical
models do not account for spatial heterogeneity; in fact,
non-spatial models are in the vast majority. Typically,

non-spatial models get away with ignoring space because
theymodel dynamics that occur more slowly than the time
it takes for a molecule to diffuse across a cell, because they
investigate processes that are not intrinsically spatial, and
because they do not demand high quantitative accuracy.
As the tools are becoming available, including both fast
computers and new software algorithms [45,142,143,144],
the interest in including spatial detail is increasing. These
spatial models can be either deterministic or stochastic, of
which our primary focus is on the latter ones.

As with the non-spatial methods that are described
above, stochastic effects in spatial models arise from the
discreteness of molecules. This leads to fluctuations in
the numbers of molecules, which are typically on the or-
der of the square root of the number of molecules in
the appropriate characteristic volume (near steady-state
and equilibrium points, but frequently greater near critical
points). In spatial models, the characteristic length scale
is no longer the size of the entire system but is dictated
by the length scale of the spatial heterogeneity. With the
shorter length scale, the characteristic volume size is re-
duced, fewer molecules are in these volumes, and stochas-
tic effects increase. Thus, stochastic simulations can be re-
quired for spatial models, even if they were not needed for
the corresponding non-spatial model. There are also other
good reasons to model stochastic effects in spatial simula-
tions. Many spatial phenomena, such as noise that arises
from ligand rebinding [141], cannot be adequately treated
without considering the detailed molecular interactions.
Finally, a model is only as good as its weakest aspect. If
one increases the accuracy of a model in one way, such as
by accurately treating either space or stochastics, then the
benefits may not be realized until the other aspect is ad-
dressed as well.

Schemes for investigating a chemical system with spa-
tial and stochastic detail can be classified by whether they
consider molecules within populations or as individuals.
In the former case, space is divided it into small subvol-
umes, whereas in the latter, space is continuous. These
classes are described in detail below. Another approach
is lattice-based methods [145,146,147,148,149]. However,
we do not discuss them here because they are rarely used
for quantitative modeling. Furthermore, the underlying
lattice geometry usually affects the results, thus making
them less realistic.

Population-Based Spatial Models

In a top-down approach towards spatial modeling, one
starts with a simple, deterministic, macroscopic descrip-
tion and then adds successive layers of detail. In this case,
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the natural starting point is with the standard textbook de-
scriptions of chemical reactions and diffusion [24]. Reac-
tions are described with mass action reaction kinetics ex-
pressed with the reaction rate equation that was discussed
above (Eq. (4)). Diffusion is described with the diffusion
equation [24], also called Fick’s second law of diffusion,
which is
@Zi(r; t)
@t

D Dir
2Zi(r; t) : (13)

In an extension of the definition given before, Zi(r; t) is
the concentration of component i at the 3-dimensional po-
sition r and time t. Di is the diffusion coefficient for com-
ponent i.

Because reactions and diffusion occur simultaneously,
the respective equations are combined to express the si-
multaneous effects of both processes to yield the reaction-
diffusion equation,
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This partial differential equation (PDE) underlies a great
deal of theory on chemical and biological pattern forma-
tion [126,136,150,151]. The Virtual Cell computer pro-
gram [152] is general-purpose software that simulates
the reaction-diffusion equation. It has been used pri-
marily to explore spatial effects in intracellular signal-
ing [153,154,155].

The reaction-diffusion equation is deterministic, so it
captures neither the discreteness of reaction events nor
the Brownian motion processes that underlie diffusion.
It is possible to add this stochasticity directly into the
deterministic theory but that would create a set of cou-
pled stochastic scalar field equations, which would be ex-
traordinarily complicated. Neither the deterministic nor
the stochastic PDEs are tractable to work with analytically
for any but the very simplest systems except, perhaps, in
steady-state. Thus, most analysis is either computational
or approximate.

In most such analyses, the equations are first simplified
by dividing the system volume into an array of small cu-
bic subvolumes, each with width l. This spatial discretiza-
tion changes the diffusion portion of the reaction-diffu-
sion equation into a discrete form:

dZi;k(t)
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The index k denotes the subvolume number, much as r
represented the spatial location. The latter summation in
this discrete reaction-diffusion equation extends over all
nearest neighbors of subvolume k, denoted by k0. Because
the description of space was changed from continuous
states to discrete states, much like the discrete kinds of
molecules that are labeled by the index i, diffusion is now
formally identical to reactions. The “reaction rate con-
stant” for diffusion [156] between one subvolume and its
neighbor is Di /l2. Because of this mathematical equiva-
lence, much of the following discussion on the stochastic
simulation of the reaction-diffusion equation parallels the
discussion presented earlier on non-spatial stochastic sim-
ulations.

The first spatial stochastic equation that we present
is the one that accounts for the least detail. It is the spa-
tial chemical Langevin equation, which results from adding
white Gaussian noise to the discrete reaction-diffusion
equation. It is
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ã j(Zk(t))

�

C
X

k0

(
Di

l2
�
Zi;k0(t) � Zi;k(t)

�

C �k0(t)
r

Di

l2

�q
Zi;k0(t) �

q
Zi;k(t)

� )

:

(16)

In an extension to what was presented before, � j(t)
and �k0(t) represent temporally uncorrelated, statistically
independent Gaussian white noises [106]. This is a spe-
cific example of the more general multivariate Langevin
equation; it, and the multivariate Fokker–Planck equation,
have been explored in depth [41,105]. However, the more
specific spatial chemical Langevin equation has essentially
never been used, investigated mathematically, or simu-
lated. The sole exception that we are aware of was its sim-
ulation for a figure for a tutorial article [8] (those results
are reproduced in Fig. 1).

The spatial chemical Langevin equation captures
stochasticity reasonably accurately for systems in which
there are many molecules per subvolume but not for those
with few molecules per subvolume. Errors arise both be-
cause Gaussian white noise is the incorrect fluctuation dis-
tribution [100,104] and because it treatsmolecule amounts
as continuously variable quantities. These are addressed
by moving to the next level of detail in which the con-
tinuous molecular concentrations are replaced by dis-
crete numbers of molecules. This changes the temporally
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continuous reaction and diffusion processes to stochas-
tic jump processes. The reaction-diffusion master equa-
tion [156,157,158,159] (RDME) describes the time depen-
dence of the system at this level of description. It is
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dt
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P(x; t) is the probability that the system is in state X D x
at time t, Xi;k is the number of molecules of type i in sub-
volume k, X is the vector of all Xi;k values, and aj is the
propensity of reaction j.

The RDME expresses as much detail as is possible
through these successive improvements of the reaction-
diffusion equation. It is tempting to think of it as the fun-
damental equation for reactions and diffusion, and thus
the basis for a statistical theory of chemistry. In fact, it is
sufficiently accurate for most systems, but it nevertheless
involves approximations that can be important in some
situations. Firstly, neither of the starting equations, which
are mass action kinetics and Fickian diffusion, are com-
pletely accurate even for very large systems. Mass action
kinetics does not address the increased reaction rates that
occur on extremely short time scales, which arise from re-
duced spatial correlations [160,161]. Nor does it address
the geminate recombinations that can occur between the
products of a dissociation reaction [162,163]. The diffu-
sion equation is usually quite accurate for dilute solu-
tions but fails for highly crowded ones [164,165], includ-
ing most biological systems [166]. Secondly, the discretiza-
tion of space into small subvolumes can also lead to in-
accuracies, or exacerbate the inaccuracies just mentioned.
The subvolume sizes must not be so small that they im-
pinge on the microscopic details of the reaction or dif-
fusion processes. This means that they need to be signif-
icantly larger than single molecules and larger than the
mean free path lengths of diffusion [156,167]. Conversely,
the subvolumes must not be so large that there would
be appreciable concentration gradients across them. This
means that the subvolume width needs to be less than the
reactant correlation length. The correlation length is hard
to predict but is at least as large as the average distance that
a reactant travels before it reacts, called the reactive mean
free path [156,167].

The RDME is even more intractable than the non-
spatial chemical master equation because of the addition
of spatial states and the many transitions that can oc-
cur between the spatial states. These additional states and
transitions also make stochastic simulations of the RDME
with Gillespie’s direct algorithm extremely slow [157].
Several faster algorithms have been developed to ad-
dress this problem. The “next reaction method” of Gibson
and Bruck [64] was adapted to spatial simulations [168],
and then further improved, to yield the “next subvol-
ume method” [132,142]. Also, a fast version of the di-
rect method [169] has been developed for spatial simu-
lations [167]. All of these methods yield exactly the same
results as Gillespie’s original methods [62,63] but use care-
fully optimized data structures to minimize the number of
computations.

A separate challenge with simulating the RDME con-
cerns the cubical subvolumes into which space was dis-
cretized. Biological systems rarely have square corners, so
the basic theory requires adaptation to account for realistic
boundaries. In one approach, the mathematics was devel-
oped for dividing boundary subvolumes into two separate
portions [170]. Using another approach, the theory was
developed for curved surfaces, which was implemented
in the MesoRD program [132,171]. Although it has not
been developed yet, it has been proposed that automatic
mesh refinement could simultaneously account for com-
plex boundaries and lead to significant computational effi-
ciencies [167].

Along with simulations of the E. coliMin system, pre-
sented in Sect. “Box 1: The E. Coli Min System”, popu-
lation-based spatial stochastic models have been used for
a variety of test systems. In the first implementation of
a spatial Gillespie algorithm, Stundzia and Lumsden used
a one-dimensional simulation to demonstrate stochas-
tic calcium wave propagation [157]. Elf and Ehrenberg
showed that spatial and stochastic effects can cause an
intrinsically bistable system to lose its global hysteresis
through the formation of spatial domains [142]. In a third
study, Isaacson and Peskin demonstrated their method for
simulating porous boundaries with a model that includes
transcription, translation, and nuclear membrane trans-
port [170].

Individual-Based Spatial Models

In a bottom-up approach to spatial modeling, one starts
with a very detailed consideration and then makes suc-
cessive approximations. A convenient place to start is by
considering every individual molecule in the system, along
with some of the molecular structures. The motions of



8742 S Stochastic Models of Biological Processes

these molecules are governed by physical forces including
steric repulsion, bond mechanics, and electrostatics. The
simulation of the motions that result from these forces is
called molecular dynamics [172]. Molecular dynamics can
yield very accurate results but is so computationally inten-
sive that it is rarely used for more than hundreds of cu-
bic nanometers of volume or more than tens of nanosec-
onds of time. These size and time scales are too confining
for studying biochemical reaction networks, so approxi-
mations are made.

At the Smoluchowski level of detail, all solvent
molecules are ignored, solute molecules are treated as
spheres, diffusion proceeds stochastically, and molecu-
lar rotation, molecular momentum, and long-range inter-
molecular forces are all ignored. This is a vast simplifi-
cation, but is often valid. It is usually reasonably accu-
rate for size scales that are larger than a few nanometers
and for timescales that are longer than a few nanoseconds,
constraints that are acceptable for an enormous range of
chemical and biological phenomena.

For diffusion at the Smoluchowski level of detail,
the effects of solvent-solute interactions on the so-
lute motion are approximated by assuming that solute
molecules diffuse with mathematically ideal Brownian
motion [173,174]. This is a key approximation that re-
places the deterministic molecular motions that result
from solvent collisions with stochastic trajectories. It is of-
ten the only source of stochasticity in the theory, or in sim-
ulations that derive from this individual-based approach.
More precisely, the position of molecule i at time t is given
with the probability density pi(r; t), which evolves over
time according to the master equation

@pi (r; t)
@t

D Dir
2pi (r; t) : (18)

This equation is nearly identical to the diffusion equation,
given above (Eq. (13)), differing only in the definitions of
the variables and the interpretation. Now, it is not a pop-
ulation of molecules that diffuse, but the positional proba-
bility density for a single molecule.

Because it is so simple, the diffusion master equa-
tion is analytically tractable, in contrast to the other mas-
ter equations that were discussed. One result is an en-
tire body of analytical theory on diffusion-influenced reac-
tions [160,175]. Nevertheless, it too becomes unmanage-
able for systems that have several interacting molecules,
so it is simulated with a technique called Brownian dy-
namics [176,177,178,179,180]. In this method, molecules
have well-defined point-like positions which are updated
at each simulation time step using random displacements.
The displacements are chosen by solving the diffusion

master equation for molecule i, which is taken to be at the
well-defined position r0 at time t0. One simulation time
step later, at time t0 C
t, the probability density for the
molecule’s position is found to be a 3-dimensional Gaus-
sian density that is centered at r0,
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The standard deviation of this Gaussian, called the root
mean square step length, is
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Brownian dynamics simulations provide accuracy that is
below that of molecular dynamics, but still captures single
molecule behavior.

Brownian dynamics has been used extensively for ex-
amining the rates of diffusion-influenced chemical reac-
tions in solution [139,177,179,180,181,182] and for the
rates of binding between ligands and receptor arrays [139,
141,178,183,184]. In these studies, simulated molecules
diffuse in solution; at the moment that a reactant pair, or
a ligand and its cognate receptor, come into contact, they
undergo a chemical reaction. While diffusing, intermolec-
ular forces are often ignored, although some studies ac-
count for these interactions as well [185,186].

To achieve the necessary level of detail, Brownian dy-
namics simulations usually use very short simulation time
steps, often on the order of picoseconds [139]. Adaptive
time steps, such that time steps are long when reactants are
widely separated and short when they are close, can speed
simulations up by several orders of magnitude, but are easy
to implement only if there is just one diffusing particle
present in the simulation volume [141]. A more sophis-
ticated method that has the same general goal of computa-
tional efficiency is calledGreen’s function reaction dynam-
ics [143,187,188] (GFRD). In GFRD, which works with
any number of molecules, the system is inspected to see
how soon the next molecular collision or reaction could
occur. The system is then advanced to that time using
a single simulation time step, the event is executed if ap-
propriate, and the cycle repeats. Yet another method, used
in a program written by one of us (SSA) called Smoldyn,
achieves computational efficiency by modifying the effec-
tive radii of simulated molecules so that the same reaction
rate is achieved with long simulation time steps as with
short ones [45,189,190]. This method does not achieve the
same spatial or temporal precision as classical Brownian
dynamics or GFRD, but the level of detail is still more than
adequate for most biological applications and has been
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shown to be indistinguishable from more accurate simu-
lations in many cases [191].

Technically, all of these algorithms execute Brown-
ian dynamics. However, the term “Brownian dynamics” is
typically used to describe highly detailed studies in which
reaction rates, rebinding dynamics, or similar phenomena
are found from fundamental molecular properties such
as molecular radii and intermolecular forces. In contrast,
GFRD and the methods used in Smoldyn are more often
used to determine system-level behaviors from known or
estimated reaction rates. These are more often called par-
ticle-based stochastic simulation methods [192].

MCell is another program that performs particle-based
stochastic simulations [144]. Unlike the others, it can-
not simulate reactions that occur in free solution, but in-
stead only treats reactions at surfaces. Despite the decrease
of versatility, it is still useful for studying a wide vari-
ety of biological phenomena [193,194,195]; in particular,
it was developed to investigate the neuromuscular junc-
tion [196,197,198]. In MCell, surface-bound receptors are
not modeled as single molecules as they would be in Smol-
dyn or GFRDmethods, but as a uniform binding probabil-
ity that applies to an entire surface tile. This decreases the
spatial resolution some, but increases the computational
efficiency.

Future Directions

The classic advice of using the right tool for the job is
as true in biochemical modeling as it is elsewhere. Sev-
eral modeling tools have been presented here. Determinis-
tic ordinary differential equation models are simple, easy
to use, and can be analyzed with many powerful theo-
retical and analytical methods. They are the right tool
for systems that can be treated as being well-mixed and
that are both large enough and sufficiently far from criti-
cal points that stochastic effects are unimportant. In con-
trast, systems that include low copy numbers of impor-
tant components, and/or that can be triggered by ran-
dom events, require stochastic modeling methods for their
investigation. These include integration of the chemical
master equation and random sampling of the stochastic
trajectories using the Gillespie algorithm, both of which
are exact methods. Approximate methods include �-leap-
ing stochastic simulations, integration of the chemical
Fokker–Planck equation, and sampling with the chemi-
cal Langevin equation. Of these, the Gillespie algorithm
has proven to be the most popular. Finally, if the system
cannot be considered to be well-mixed, then yet differ-
ent tools are needed. These include spatial variants of the
same list of simulation methods, including partial differ-

ential equations for deterministic simulations and a spa-
tial Gillespie algorithm for stochastic simulations. Particle-
tracking simulation methods allow an even greater degree
of detail.

In general, more detailed simulation methods yield
more accurate results and are based more closely on
underlying processes and less on phenomenological de-
scriptions. However, they are also more computation-
ally intensive and require more model parameters. This
parametrization poses a significant problem for current
models because the necessary quantitative experimental
data are typically only marginally adequate or are com-
pletely non-existent. For an ODE model, it is sometimes
possible to address this problem by exploring model be-
haviors over wide ranges of parameter space, from which
one can draw phase diagrams that graphically depict how
the model behaves for different parameter choices. From
this, one can sometimes constrain parameters or gain
additional insight into the model; for example, Tyson
showed how two enzyme concentrations can be used to
regulate the cell cycle, bringing an oocyte from metaphase
arrest to autonomous oscillations, and on to growth-con-
trolled cell division [30]. Because of the computational
demands of spatial and stochastic models, as well as the
richer behavior possibilities, it is much more difficult to
explore parameter space with these more complex models.
Thus, much work is needed on this topic.

More generally, the mathematical infrastructure for
designing and interpreting stochastic models lags far be-
hind that for non-spatial deterministic models. This poses
some challenges for theorists. For example, what new the-
ories and graphical tools will help scientists gain intuition
into the dynamics of stochastic systems? and what are the
controlling elements of stochastic systems? The theory is
even more unexplored when spatial organization is con-
sidered as well. Nevertheless, spatial considerations are es-
sential because no biological life has been found that is
well-mixed; instead, a tremendous amount of biochemical
activity involves membranes, polymers, protein scaffolds,
large multimeric complexes, and other spatial structures.
Theories that address these topics will not be as elegant as
those that focus on the chemical master equation, but bi-
ology is not always elegant either.

Although research on stochastic modeling of biochem-
istry grew slowly from the 1950s to the 1990s, the pace has
accelerated dramatically during the last 10 to 15 years. This
acceleration will likely continue for many more years, in
response to the faster computers that become available ev-
ery year and to the ever-increasing complexity of biochem-
ical data. With this growth, stochastic modeling may open
up entire new ways to understand cell biology.
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Stochastic Models of Biological Processes, Figure 2
Diagram of the E. coli Min system, which is used to position the
cell division plane at the cell center. Dots represent cytoplasmic
proteins, while curved lines represent helical membrane-bound
protein polymers.Colors identify theproteins: light blue forMinD
bound to ADP, dark blue for MinD protein bound to ATP, and
red for MinE. The system dynamics are summarized in the text
of Sect. “Box 1: The E. Coli Min System”

Box 1: The E. ColiMin System

The E. coli Min system has served as a proving ground
for spatial stochastic simulation methods. The Min system
is used by E. coli, in conjunction with other systems, to
position the cell division plane accurately at the cell cen-
ter [131]. The system is comprised of the proteins MinC,
MinD andMinE, which oscillate back and forth across the
cell, from one pole to the other, with a period of about
40s (Fig. 2). Of these, only MinD and MinE are required
for the oscillation, making this a relatively simple system
that exhibits remarkably interesting dynamics. Cytoplas-
mic MinD proteins bind ATP, dimerize, and polymerize
on the inside of the cell membrane to form long helical
structures that extend outwards from one of the two cell
poles. When MinE binds to the cell-center end of a MinD
polymer, it activates ATP hydrolysis which depolymerizes
the terminal subunit. As MinE progressively disassembles
aMinD polymer at one end of the cell, it reassembles again
from the opposite pole to start the next oscillation cycle.
The oscillating Min proteins continually inhibit cell divi-
sion plane formation near the poles using MinC, which
colocalizes with MinD, thus only permitting cell division
at the cell center.

This system was explored for several years with deter-
ministic reaction-diffusion models [128,199,200]. One of
these models, by Howard, Rutenberg, and de Vet [199],
was also explored by the same group using a one-
dimensional population-based stochastic method [129]
(it uses discrete particle numbers and fixed time steps,
thus conceptually placing it between the spatial Langevin
and spatial Gillespie methods). The authors found that

stochastic effects were essential for generating oscillations
in some parameter regimes, in a spatial version of stochas-
tic resonance [60,201]. Thesemodels helped direct new ex-
periments [202,203,204,205] that clarified the processes of
the system.

Building on the prior models and the new experi-
mental data, Huang, Meir, and Wingreen [130] devel-
oped a new reaction-diffusion model that wasmore closely
connected with the biology than were previous models
and that accounted for several mutant phenotypes. This
model became the basis of several stochastic simulations.
The spatial Gillespie method was employed by Fange and
Elf [132] using their MesoRD program. They showed that
a stochastic model can account for a “spotty” phenotype
and for oscillations in spherical mutant cells, neither of
which can be explained by the deterministic model. The
MCell particle-tracking program was used by Kerr and
coworkers [133] to show that the Min system alone is in-
sufficient to center the cell division plane with high accu-
racy.

Yet unexplained with these simulations were convinc-
ing experimental results that MinD forms polymers on the
cell membrane [205,206,207]. These were explored with
another particle-tracking model [208], using a method
based on Smoluchowski dynamics [45]. Although this
group did simulate spontaneous polymer formation, they
observedmany randomly oriented short filaments, in con-
trast to the few helical polymers that are observed exper-
imentally. This inherent difficulty with the reaction-diffu-
sion model [209], whether deterministic or stochastic, has
led to several studies that have focused specifically on the
polymer dynamics and shapes [134,210,211].

The E. coliMin system is already well on its way to be-
coming the prototypical system for studying spatial bio-
chemical dynamics, much as E. coli chemotaxis has be-
come the prototypical system for investigating bacterial
signaling.
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Glossary

Wiener process A Wiener process is a continuous time
stochastic process w D fw(t) ; t 2 Rg with continu-
ous sample paths and stationary independent incre-




