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ABSTRACT Several bacterial proteins have been shown to polymerize into coils or rings on cell membranes. These include
the cytoskeletal proteins MreB, FtsZ, and MinD, which together with other cell components make up what is being called the
bacterial cytoskeleton. We believe that these shapes arise, at least in part, from the interaction of the inherent mechanical prop-
erties of the protein polymers and the constraints imposed by the curved cell membrane. This hypothesis, presented as a simple
mechanical model, was tested with numerical energy-minimization methods from which we found that there are five low-energy
polymer morphologies on a rod-shaped membrane: rings, lines, helices, loops, and polar-targeted circles. Analytic theory was
used to understand the possible structures and to create phase diagrams that show which parameter combinations lead to
which structures. Inverting the results, it is possible to infer the effective mechanical bending parameters of protein polymers
from fluorescence images of their shapes. This theory also provides a plausible explanation for the morphological changes
exhibited by the Z ring in a sporulating Bacillus subtilis; is used to calculate the mechanical force exerted on a cell membrane
by a polymer; and allows predictions of polymer shapes in mutant cells.

INTRODUCTION

Despite their simplicity when compared to eukaryotes, bac-

teria display a remarkable degree of internal structure. This

is particularly apparent during cell division, which involves

carefully choreographed chromosome and plasmid segrega-

tion, division septum assembly, and cell membrane rear-

rangements (1–3). Some species, such as Escherichia coli,
divide to form essentially identical daughter cells, whereas

others, including Caulobacter crescentus, form morpholog-

ically different daughter cells. Largely driven by new exper-

imental techniques, intracellular bacterial structure is the

focus of much current research. As well as being intrinsically

interesting, results are also helping to explain eukaryotic cell

structure and are showing the ways in which living systems

are assembled from otherwise inanimate molecules.

Several recently discovered bacterial structures are multi-

protein polymers that are bound to the inside of the cell mem-

brane, which often take the forms of rings or helices (Fig. 1).

These polymers serve various functions: some help define

the cell morphology (4–6), others form a septum that con-

tracts upon cell division (7,8), and yet others are involved in

locating the cell division site (9,10). Presumably, the shapes

and locations of the polymers are essential to their functions;

but what gives them their shape, and what positions them in

the cell?

We focus on the membrane-bound protein polymers that

are shown in Fig. 1: MreB, FtsZ, and MinD. MreB is a cyto-

skeletal protein that is found in E. coli and other bacteria

which forms helices that extend the entire length of the cell

and back, apparently forming closed loops (11). It helps

determine the shape of a cell, probably by directing cell-wall

synthesis during growth and division (4,12). FtsZ, which is

widespread among prokaryotes, copolymerizes with several

other proteins in a so-called Z ring (7,8). Typically, the Z

ring forms at the cell center to form the cell division septum

and then contracts to divide the mother cell into two daughter

cells. It also exhibits remarkable dynamics during Bacillus
subtilis sporulation (13): the centrally located Z ring converts

into a helix, expands to span the length of the cell, separates

and transforms into separate rings around each pole, and then

one ring contracts to separate the spore from the mother cell.

The final protein, MinD, forms a polymer in E. coli that

primarily spirals about one cell pole, but also extends toward

the other pole (14–16). It helps position the E. coli Z ring at

midcell through an oscillatory mechanism in which MinD

alternately polymerizes and depolymerizes at opposite ends

of the cell (9).

In this article, we show that mechanical interactions be-

tween membrane-bound polymers and cell membranes are

sufficient to explain the rings, helices, and polar-targeted struc-

tures that are observed for MreB, FtsZ, and MinD. It also

provides a plausible explanation for the dynamics of the

Z ring during B. subtilis sporulation. To explore these ideas,

we used a combination of numerical and analytical techniques

to investigate the low-energy structures of stiff unbranched

polymers that are bound to rigid spherical, cylindrical, or

rod-shaped membranes.

Description of the model

In our model (Fig. 2), a polymer is a sequence of identical

monomers, where each of these monomers may represent

several individual proteins, proteins in neighboring filaments

of a polymer bundle, and possibly even several kinds of
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protein. The polymer shape is characterized as a sequence of

turning angles as one progresses from the back of the poly-

mer toward the front (much like actin which has pointed and

barbed ends, the structures considered here are likely to be

directionally asymmetric as well (5,17,18)). This polymer

model was used with straight monomers and finite bends for

simulations, and in an analogous continuous form for ana-

lytical work. It is a variant of the classic wormlike chain of

Kratky and Porod (19) and of several models that were used

more recently to investigate the mechanics of DNA (20–22).

We follow the Tait-Bryan convention (23) for rotational

angles, commonly used for ships and airplanes, because it

leads to more intuitive results for small bending angles than

do the conventions that are more common in the polymer

physics literature such as the Euler (23) or Flory conventions

(24). In our model, the membrane-binding side of each

monomer is called its bottom, so that rotation tangent to the

membrane surface is rotation toward the monomer’s left or

right. This is called yaw. Rotation out of the tangent plane is

up or down in the monomer’s frame of reference and is called

pitch. Rotation around the polymer axis is called roll.

Because the word pitch can also be used to describe the

spatial period of a helix, we reduce confusion by only using

the word pitch for the pitch-rotation, and using helix-period

for the alternate definition. Following the convention (23),

yaw, pitch, and roll rotations are indicated with f, u, and c

subscripts, respectively.

A bending energy is defined to make modeled polymers

stiff, with an intrinsic shape. For the discrete case, the energy

for the j th bend is defined as

Ej ¼
kf

2
ðaf; j � a

o

f
Þ2 1

ku

2
ðau; j � a

o

u
Þ2 1

kc

2
ðac; j � a

o

c
Þ2: (1)

The variables af,j, au,j, and ac,j are the yaw, pitch, and roll

angles for the jth bend; af�, au�, and ac� are called the preferred

bending angles, which describe the intrinsic polymer curva-

ture; and kf, ku, and kc are the bending force constants,

which produce polymer stiffness. Only these low order terms

of an implicit Taylor expansion of a more complicated

energy function are included because the angles are typically

small and because our focus is on low energy conformations.

For the continuous model, the bending energy density is

defined as

eðsÞ ¼ kf

2
½afðsÞ�a

o

f
�2 1

ku

2
½auðsÞ�a

o

u
�2 1

kc

2
½acðsÞ�a

o

c
�2:

(2)

Here, s is the pathlength along the polymer from the back to

the front, kf and ku are flexural rigidities (25), kc is the

torsional rigidity, and the a-values are the actual or preferred

curvatures. Using x to represent any of f, u, or c, the

correspondence between the discrete and continuous param-

eters, in the limit of short monomer length, l, is ax ¼ ax/l,
ax� ¼ ax�/l, kx ¼ kxl, and e ¼ E/l. For both models, we ig-

nore interactions between non-neighbor monomers such as

excluded-volume effects.

For all of the figures and some of the equations presented

in this work, the three bending rigidities are set equal to each

other. This is equivalent to treating the polymers as though

they are solid cylindrical rods in which the compositions are

isotropic and have a Poisson ratio of 0 (significantly more

compressible than typical solids). We do this to simplify the

analysis and so that fewer parameter effects need to be ex-

plored. More importantly, moderate inequalities in the

bending rigidities do not affect most results that are presented

FIGURE 2 Polymer models used for simulations and analytical theory.

(Top) Discrete model with finite length monomers in which the jth bend has

yaw, pitch, and roll angles af,j, au,j, and ac,j, respectively. (Bottom) Con-

tinuous model in which the yaw, pitch, and roll curvatures at pathlength

position s are af(s), au(s), and ac(s), respectively.

FIGURE 1 Examples of coiled protein polymers in bacteria, which are

bound to the inside of the cell membrane. (A) MreB in E. coli (15), (B) FtsZ

in B. subtilis (both the central ring and the helix) (13), and (C) MinD in

E. coli (15). In all images, the polymerizing proteins were fused to, and

imaged with, fluorescent protein markers. The membrane is made visible in

panel B with an orange membrane stain, and the cell cytoplasm is shown in

panel C with red fluorescent protein. In this article, a mechanical explanation

for these polymer structures is shown to be consistent with the experimental

images. (Figures are reprinted with permission from the referenced articles:

panels A and C are copyright 2003 National Academy of Sciences USA, and

panel B is copyright 2002 Elsevier.)
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below; they are discussed where they do. There is very little

experimental evidence on which to evaluate this assumption

of equal rigidities. The best is that MreB is a structural

homolog of actin for which the three rigidities have in fact

been found to be very similar to each other, using experi-

mental mechanical measurements (26–29). On the other

hand, microscopy experiments indicate that the torsional

rigidity of actin may be much smaller than the flexural rigid-

ity (30,31). Furthermore, rheological properties of MreB gels

have been shown to differ some from those of actin gels (32),

implying that there may be mechanical differences between

MreB and actin filaments.

It is even harder to estimate the preferred curvatures in the

model. In principle, they could be derived from protein crys-

tal structures and models of molecular interaction potentials.

In practice, this is impossible because the arrangement of

individual proteins in these filaments is largely unknown;

there are many contact points between neighboring proteins

in filaments, and the bending angles that are involved are

very small. Because of this lack of information, we explore

our model over wide ranges of preferred curvature values. In

Discussion, our results are used to estimate the preferred

curvatures for MreB, MinD, and FtsZ.

Simulation methods

Statistical mechanics simulations were performed using a pro-

gram based on the Metropolis algorithm (33) (the source code

can be downloaded from: genomics.lbl.gov/;sandrews/

software.html). Briefly, a simulation starts with an initial poly-

mer structure, computes its bending energy using Eq. 1, makes

a random change to create a trial structure, computes the new

bending energy, and replaces the initial structure with the

trial structure if 1), the trial energy is less than the initial

energy; or 2), a uniformly chosen random number between

0 and 1 is less than exp(�DE/kBT), where DE is the

difference between the bending energies and kBT is the

thermal energy. This cycle repeats until a total of 20,000 trial

moves are accepted, after which point essentially no sub-

stantial changes are made. Each trial structure is created with

either of two equally likely changes: a random internal angle

is changed a small amount, which pivots the entire polymer

from that point to a randomly chosen end; or the polymer is

treadmilled one step by adding a monomer to a random end

of the polymer, with a small random angle, and a monomer is

removed from the other end. Both possibilities are used be-

cause preliminary work showed that either one alone led to

the simulation getting stuck in local energy minima early in

the optimization process. Trial moves are reversible, ergodic,

and unordered, which are essential for achieving accurate

statistics with the Metropolis algorithm (33). In a method

called simulated annealing, the thermal energy is started with

a high value to rapidly explore the space of possible polymer

structures and is gradually decreased to isolate a low-energy

structure. Final structure morphologies and bending energies

were quite consistent over different runs, were independent of

the starting polymer structure, and did not change with more

conservative parameter choices (more iterations, slower an-

nealing rate, fewer monomers, etc.). These indicate that the

simulation results accurately represent the desired minimum

energy structures.

In the simulation program, polymers are mapped from a

flat plane to the surface of a sphere, cylinder, or rod. It is im-

possible to map points from a plane to these curved surfaces

while preserving local distances, so the program instead

maps angles: a turn to the left or right on a plane is mapped to

the corresponding three-dimensional bend (yaw, pitch, and

roll) for the appropriate surface. Constraints are that mono-

mer ends are in contact with the curved surface and the

bottom faces of monomers are plane-parallel to the surface

beneath the center of the monomer. These mathematics are

described in the Appendix.

RESULTS

Entropy contributions

In preliminary studies, we investigated the shapes of polymer

structures over a range of simulated thermal energies to in-

vestigate the role of entropy. Results are what one would

intuitively expect: as the effective temperature increases, the

polymer shapes become less ordered. At high effective tem-

peratures, the polymers are completely unordered random

walks on the membrane surface. No phase transitions or other

interesting behaviors were observed.

Because MinD, MreB, and FtsZ all appear to polymerize

with multifilament bundles (17,34–37), their rigidities are

probably comparable to or larger than those of actin, which is

a two-filament bundle (38). Actin has a bending persistence

length of ;16 mm (26,28), which is several times the width

of rod-shaped bacterial cells. Thus, for all of the polymers

that we focus on, mechanical factors are expected to be more

important in determining polymer shapes than entropic ones.

Because entropy contributions are likely to be minor for

these systems, we focus the rest of our discussion on the

low-energy results.

Spherical membrane

On a spherical surface, low-energy polymer structures are

invariably circular (Fig. 3 A). A preferred yaw curvature of

zero leads to a great circle around the sphere and larger ab-

solute values of af� yield progressively smaller circles. Seen

from the outside, with the circle on the close side of the

sphere, the polymer turns clockwise or counterclockwise for

positive and negative af� values, respectively. The preferred

roll and pitch curvatures were found to have no effect.

These simulation results can be understood analytically.

For a continuous polymer that is constrained to the inside of

a sphere of radius R, it is shown in the Appendix that the
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pitch-and-roll curvatures are constrained to �R�1 and 0,

respectively. Because these are fixed, variation of the cor-

responding preferred values cannot change the actual pitch

or roll curvatures, and thus cannot select specific low-energy

structures; but this variation does affect the polymer-bending

energy density, shown in Fig. 3 B. In contrast, the yaw cur-

vature is unconstrained, so the lowest energy structure is

attained when the actual yaw curvature equals the preferred

value. Quite generally, a constant transverse curvature, with

no rolling curvature, yields a circular shape. This is the

situation here, which is in agreement with the simulations.

Several properties of the polymer circle can be calculated.

Firstly, the circle radius is the inverse of the total curvature,

[a2
fðsÞ1 a2

uðsÞ]
1/2, so the circle radius is

Rpolymer ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
o2

f
1 R�2

q : (3)

The polymer-bending energy density is found from Eq. 2 and

the constraints to be

e ¼ ku

2

1

R
1 a

o

u

� �2

1
kc

2
a

o2

c
; (4)

shown in Fig. 3 C. Finally, the polymer exerts a force on the

spherical membrane. The overall outward force that is ex-

erted by the polymer is the derivative of the energy density

with respect to the sphere radius, which is

F ¼ ku

R
2

1

R
1 a

o

u

� �
; (5)

shown in Fig. 3 D. It is noteworthy that the total inward or

outward force that the polymer applies to the membrane is

independent of af�, and thus of the polymer shape. There are

no forces parallel to the membrane because our modeled

membrane does not restrict motion in the membrane plane; in

this way, it conforms to the commonly accepted fluid-mosaic

model of biological membranes. Naturally, if the membrane

were sufficiently flexible to respond to the force given above,

the polymer would not simply change the sphere radius but

would distort it. Membrane and cell wall deformation is suf-

ficiently complex (25,39), and distinct from the focus of this

work, that we do not consider it further.

As an interesting aside, Spakowitz and Wang showed that

if one removes our constraint that the bottom face of the

polymer must be plane-parallel to the surface, then quite dif-

ferent structures result (40). In this case, the polymer forms a

complex pattern of overlapping cycles.

Cylindrical membrane

A greater diversity of structures is found on cylindrical sur-

faces, shown in Fig. 4 A. These are right- and left-handed

helices of various pitches, rings around the cylinder, straight

polymers that parallel the cylinder axis that we call a line-

morphology, and loops that form circles on a side of the

cylinder.

As on a sphere, the pitch-and-roll curvatures are also con-

strained on a cylinder. It is shown in the Appendix that, at

any point along the polymer, these curvatures are constrained

according to the equations

au ¼ �
sin

2
b

R
ac ¼

sin b cos b

R
: (6)

The variable b is the absolute direction of the polymer on the

cylinder surface, relative to the cylinder axis. In other words,

if the cylinder were unrolled into a plane with the x axis of

the plane defined to be parallel to the cylinder axis, then b is

the angle of the polymer, relative to the x axis. If b is constant

over the length of the polymer and equals 0, or another

integer multiple of p, then the polymer is parallel to the cy-

linder, resulting in a line morphology. Values of 6p/2 imply

that the polymer direction is perpendicular to the cylinder

axis, yielding rings around the cylinder. Other constant

values of b produce helices with different spatial periods.

In Fig. 4 B, the pitch-and-roll components of the curvature

energy are shown as functions of the actual pitch-and-roll

values. The curvature constraints appear in this figure as the

circle that is described by the equation (derived from Eq. 6)

FIGURE 3 A polymer on a sphere. (A) Examples of low-energy structures

with af� ¼ 0 and af� ¼ 1.5/R. (B) Example of a potential energy surface for

polymer curvature, illustrated for parameter values au� ¼ �0.7/R and ac� ¼
0.3/R. Here, and in other figures, blue is low energy and red is high energy.

Quantitative color scales are not shown because flexural rigidities are

unknown for the polymers that we focus on. However, color scales are

consistent between comparable figure panels, which in this case are panels

B and C. On a sphere, the actual au and ac values are constrained to the pink

dot marked sphere constraint. (C) Minimum attainable energy density as

a function of the parameter values. (D) Radial force on the spherical mem-

brane by the polymer, as a function of the parameters; af� has no effect on the

force.
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au 1
1

2R

� �2

1 a
2

c
¼ 1

4R
2: (7)

The value of b increases linearly as one moves counter-

clockwise around the constraint circle, going from 0 to p in

one full rotation. We define U(b) to be the pitch-and-roll cur-

vature energy as a function of the position on the constraint

circle. It is the height of the energy graphed in Fig. 4 B over

the constraint circle and it is also the last two terms of Eq. 2;

U(b) is graphed in the inset of Fig. 4 B.

Assume for now that af�, the preferred yaw curvature,

equals zero. We show below that this implies that the actual

yaw curvature, af, also equals zero over the length of the

minimum-energy structure. Because there is no left-right

curvature, b is constant over the length of the polymer and

the morphology is a ring, line, or helix. What is the value of

b? In both portions of Fig. 4 B, the coordinate with the lowest

attainable energy is shown with an asterisk. It corresponds to

a certain b value, and thus a certain helix period. More gen-

erally, whenever ku ¼ kc, the lowest attainable energy point

will be at the intersection of the constraint circle and the line

from the circle center to (au�, ac�), which can be inferred from

Fig. 4 B. This yields the absolute polymer angle:

b� ¼ 1

2
Atan

a
o

c

a
o

u
1 ð2RÞ�1: (8)

This result, interpreted as a polymer morphology, is shown

in Fig. 4 C as a phase diagram.

If ku 6¼ kc, the parabolic energy basin shown with colors

in Fig. 4 B becomes distorted so that the sides are steeper on

one axis than the other, thus changing its shape from that of a

bowl to that of a trough. This also changes the shape of U(b),

possibly causing it to have not one but two minima. Two

minima would create bistability, meaning that either of two

polymer conformations would be stable to perturbations. For

example, it was mentioned above that actin may have a much

lower torsional rigidity than flexural rigidity (30,31). Sup-

posing that this inequality is the case for, say MreB, then the

U(b) function for MreB would have two minima at equal au

values, with nearly the same energies. These would lead to

an equal prevalence of right- and left-handed helical MreB

polymers, both with the same helical period. Quite generally,

bistability can also lead to switching behaviors. Here, small

changes in the preferred curvatures, or in the rigidities,

would change the relative energies of the two minima and

could thus abruptly switch the morphology from one shape

to another.

Equation 2 only includes three terms of the nine that might

reasonably be included. Omitted are cross-terms, such as

kfu[af(s)�af�][au(s)�au�]/2. Inclusion of these terms again

distorts the parabolic energy basin that is shown in Fig. 4 B,

but now so that the trough orientation is not necessarily

parallel to the au or ac axes (these are just the off-diagonal

terms of a three-variable Taylor expansion (41)). Again, this

FIGURE 4 A polymer on a cylinder. (A) Examples of low-energy structures,

which we call a right-handed helix, a ring, a line, and a loop, respectively. (B)

Example of a potential energy surface for polymer curvature, illustrated for

parameter values au�¼�0.7/R and ac�¼ 0.3/R. On a cylinder, the actual au and

ac values are constrained to the circle shown with a pink dashed line. The inset

shows the height of the energy surface as a function of the position around the

constraint circle, for which one full turn is an increase of b from 0 to p. Asterisks

show the lowest energy value that obeys the constraints. (C,D) Phase diagrams

for af�¼ 0 and af�¼ 0.5/R, respectively. (Green, right-hand helix; pink, left-hand

helix; blue, loops; black line, ring; and dashed line, line. Gray lines connect

parameter values that yield helices with the same helix-pitch.) (E,F) Minimum

attainable energy densities for af� ¼ 0 and af� ¼ 0.5/R, respectively, using the

same color scale. In both cases, the energy is minimum at the constraint circle. In

panel F, the dashed line indicates the boundary of the loops region, which is also

a local energy maximum. (G,H) Radial force on the cylindrical membrane for

af�¼ 0 and af�¼ 0.5/R, respectively. In both cases, the radial force is zero at the

constraint circle.
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changes the precise shape of U(b) and changes the position

of the energy minimum (or minima). It is impossible to

analytically solve for energy minima when ku 6¼ kc or when

these cross-terms are included, but they are easily found with

numerical minimization algorithms (42). (C-language code

for this is available in the Supplementary Material.)

Now consider a non-zero af�; this makes the polymer

‘‘want’’ to curve either left or right in the plane of the sur-

face. Considering a very long polymer so that end effects are

unimportant, this was shown by simulation to have either of

two effects: either the polymer curves continually, or it does

not curve at all. In the former case, the polymer adopts a

looping morphology on the side of the cylinder, while the

latter case leads to rings, lines, or helices, exactly as before.

Considering the loops, a non-zero af(s) causes the absolute

angle of the polymer on the cylinder, b(s), to increase or

decrease as one progresses from the back to the front of the

polymer. This curvature is represented in Fig. 4 B by motion

around the constraint circle, and around the periodic function

U(b). Continuous curving can reduce the energy in the yaw

term of Eq. 2, but, because it makes b(s) usually unequal to

b*, the pitch-and-roll terms of the equation are nearly always

greater than their minimum values. In contrast, a noncurving

polymer can minimize the energies for pitch and roll, but not

for yaw; in this case b(s) is constant and equals b*. Thus,

there is an energy tradeoff. Large absolute values of af� lead

to loop shapes, while small absolute values lead to the

noncurving rings, lines, and helices. Also, looping is favored

when U(b) is relatively flat, which occurs when au� and ac�
are near the center of the constraint circle.

Fig. 4 D shows a phase diagram for polymer shapes on a

cylindrical surface in which af� is non-zero. The looping

region that is shown in blue was identified from simulations

and the logic presented above, but its exact radius can only

be found by calculating the minimum energy densities for

the nonlooping and looping structures, described next.

The curvature energy density for a ring, line, or helix is

simply Eq. 2, but with substitutions for the minimum energy

curvature angles:

e ¼ kf

2
a

o2

f
1 Uðb�Þ: (9)

This energy density is graphed in Fig. 4 E and in the outer

(nonlooping) portion of Fig. 4 F. It is seen that the energy

density is lowest when the preferred curvatures are on the

constraint circle because this allows the actual curvatures to

equal the preferred ones.

For the looping situation, the energy density varies over

the polymer pathlength because the curvatures vary. Thus,

the energy density average needs to be calculated. Rather

than finding it by integrating over the pathlength s, it turns

out to be easier to integrate over the absolute angle b. Fol-

lowing is the average energy density for half of a polymer loop,

for which b is taken from 0 to p:

e¼
Z p

0

1

a9fðbÞ
db

� ��1Z p

0

kf

2
ða9fðbÞ�a

o

f
Þ2 1UðbÞ

h i 1

a9fðbÞ
db:

(10)

The term in brackets inside the second integral is the energy

density as a function of angle b, mostly from Eq. 2 and the

definition of U(b). The function a9f(b) gives the yaw cur-

vature for absolute angle b, exactly as af(s) represents the

yaw curvature at pathlength s. The other term in the second

integral weights the energy density by the pathlength that

the polymer spends at each absolute angle to address the fact

that the integral is over b rather than s. Because a9f(b) is the

bending angle per unit of pathlength, 1/a9f(b) is the amount

of pathlength per unit amount of bending angle, which is the

desired weighting factor. Finally, the first term in the equa-

tion corrects for the effect of the weighting factor within the

second integral. By symmetry, the energy density of one half

of a polymer loop is identical to that for the other half, so

Eq. 10 also represents the average energy density for a whole

loop. Also, the average energy density of a sufficiently long

polymer approaches that for each loop.

To solve Eq. 10 for the average energy density of a

minimum-energy loop, one needs to optimize it not for single

value (comparable to b* in Eq. 9), but for the optimal function

a9f(b). This type of problem is called the calculus of variations

(41). This particular optimization cannot be solved analyti-

cally so we use a numerical variational treatment: a9f(b) is

expanded with a 24-term Fourier series because it is a periodic

function; then, a greedy algorithm that employs a random

walk in Fourier parameter space optimizes the coefficients to

achieve the minimum average energy density (the C-language

code is available in the Supplementary Material). The re-

sulting average energy density is compared to that from Eq. 9

to determine if the lowest energy structure is a looping or non-

looping structure. In the former case, the appropriate portion

of the phase diagram is colored blue in Fig. 4 D and

the average energy density is graphed in the inner portion of

Fig. 4 F. Results from this calculation agree well with both

the qualitative discussion presented above and those from

simulations.

As was done for the spherical surface, the radial force

exerted by a polymer on a cylindrical surface is found by dif-

ferentiating the curvature energy density by the radius, which

is now the cylinder radius. This force is shown in Fig. 4, G
and H, for zero and non-zero af� values, respectively. There

is no force when the preferred curvatures lie along the

constraint circle. There is a net inward force on the mem-

brane when these parameters lie outside the circle, and vice

versa. This radial force, whether inward or outward, is stron-

gest for ring shapes, decreases with longer-period helices, and

becomes zero for lines.

Thus far, the energy densities that have been minimized

are averages over the entire polymer. However, if a polymer

grows rapidly and cannot rearrange once it is formed, then

the relevant energy density is only that at the growing end.
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This does not affect the discussions presented above for a

polymer on a sphere, or on a cylinder where af� was consid-

ered to equal zero. However, a different conceptual picture is

required for a polymer on a cylinder with non-zero af�. Now,

it is best to think of the preferred yaw value as applying a

curvature force at the polymer terminus (this can be seen by

analogy between Eq. 2 and Hooke’s law). The polymer

responds by curving, as it grows, until an equal opposing

curvature force is applied by the pitch-and-roll constraints.

This latter force is proportional to the slope of U(b) (Fig. 4 B).

Once equality is reached, if it can be achieved, the polymer

grows thereafter as a ring, line, or helix. On the other hand,

the yaw force may exceed the maximum opposing pitch/roll

force, in which case the polymer continues to turn indefi-

nitely to form a loop morphology. Returning to the former

case, the absolute angle of the ring, line, or helix is found by

setting the net curvature force to zero,

0¼ kfa
0

f
1 l

@UðbÞ
@b

; (11)

and solving for b. A complication seen here is that the rel-

ative importance of the yaw and pitch/roll forces depend on

the monomer length, l. The reason is that for extremely short

monomers, the local cylinder surface is effectively flat so the

yaw force dominates; the opposite is true for long monomers.

Biologically, the effective monomer length is the amount

of the polymer terminus that is relatively free to move on

the membrane surface.

Rod-shaped membrane

For the most part, structures on a rod-shaped membrane

combine the results for the spherical and cylindrical mem-

branes. If the polymer energy density can be lower on the

cylinder portion of the rod than on one of the hemispherical

endcaps, it targets the cylinder portion and adopts a ring,

line, helix, or loop morphology, depending on the preferred

curvatures. On the other hand, if the energy density is lower

on a sphere, the polymer becomes polar-targeted, meaning

that it forms a circle about one of the hemispherical endcaps.

As shown in Fig. 5, A and B, polar-targeting is possible when

there is a non-zero preferred yaw angle.

The phase diagram for the morphology as a function of the

preferred yaw, pitch, and roll angles is fundamentally a

three-dimensional concept. Four slices of this volume are

shown: the pitch-roll plane at af�¼ 0 (Fig. 5 A), the pitch-roll

plane at af�¼ 0.5/R (Fig. 5 B), the pitch-yaw plane at ac�¼ 0

(Fig. 5 C), and a slice that is taken about the cylinder

constraint circle (Fig. 5 D). The first two are analogous to

ones shown earlier for cylindrical membranes. The others

show that polar-targeting and loops become increasingly

dominant structures as preferred yaw angles get farther from

zero. In contrast, rings are low-energy structures in only the

special case that both af� and ac� equal zero and au� , �0.5/

R. As discussed below, many protein polymers probably do

not exert strong forces on the membranes, which allows the

relevant portion of the three-dimensional phase diagram to

be reduced to only that shown in Fig. 5 D. Here, the param-

eter possibilities that give rise to rings reduce to a single

point, while those for left- or right-handed helices become

finite areas.

Long polymers that are targeted to the cylindrical portion

of the cell do not necessarily fit there. In these cases, the

polymer simply wraps around the endcaps as few times as

possible, with radii of curvature that are dictated by the pre-

ferred yaw angle (Eq. 3). Near the boundary of the polar-

targeted and either the helix or loop regions of the phase

diagram, there is minimal energy difference between the two

possibilities. Simulated polymers with parameters near these

boundaries frequently adopted hybrid shapes in which dif-

ferent parts of the polymer took on different morphologies.

Most of the polymer structures that are possible on rod-

shaped membranes have been observed in live cells. FtsZ

FIGURE 5 Phase diagrams for polymer morphologies on a rod-shaped

membrane. Colors and symbols are the same as for Fig. 4, but now with

orange to indicate polar-targeting. RH, right-handed helix; LH, left-handed

helix; Rn, ring; Ln, line; Lp, loops; and PT, polar-target. (A,B) Phase

diagrams for af� ¼ 0 and af� ¼ 0.5/R, respectively. Selected simulated low-

energy structures are shown for the indicated parameter choices. (C) The

pitch-yaw plane of the three-dimensional phase diagram at au� ¼ 0. The

dotted region indicates line morphologies. (D) Phase diagram in which

the abscissa is the position around the cylinder constraint circle, measured

with the angle b, and the ordinate is the preferred yaw curvature. The black

dot represents a ring morphology. In panels C and D, numbered black

diamonds indicate the parameters of the respective simulated structures that

are shown on panels A and B.

1878 Andrews and Arkin

Biophysical Journal 93(6) 1872–1884



forms a ring (8), MreB forms helices (11), and MinD is a

hybrid of polar-targeted and helical (15). TubZ is a recently

discovered member of the FtsZ/tubulin superfamily that

exhibits line-shaped structures (43). The sole morphology

that has not been observed yet in bacteria is the loops

structure.

DISCUSSION

Dynamics and mobility

Our model is defined for a polymer that is static in com-

position and that can move freely within the plane of a mem-

brane. This is in marked contrast to the biological situation.

All three protein polymers that we focus on are highly

dynamic: MinD polymers form and disassemble approxi-

mately every 20 s in an oscillation from one cell pole to the

other (44), Mbl (a protein that is similar to MreB) proteins

turn over with a half-time of ;8 min (45), and FtsZ proteins

turn over with a time-constant of ;30 s (46). Mobility of

these polymers on the cytoplasmic membrane varies. MinD

binds the membrane directly with an amphipathic helix (47)

and does not appear to associate with other membrane pro-

teins (16), so is probably relatively free to rearrange. FtsZ

appears to initially bind the cytoplasmic membrane through

its own interactions and through associations with the

membrane-binding proteins ZipA and ZapA, which FtsZ re-

cruits to the Z ring (48–51). In this case, there does not appear

to be any prior structure that directs FtsZ to a ring (although

see (52), where it is shown that successive division planes

alternate orientations in spherical cells), but the structure may

be anchored to the membrane once it is formed. Finally, MreB

may bind to the transmembrane proteins MreC and MreD, of

which MreC binds to the cell wall (53,54). In apparent con-

trast, it was also shown that MreC helices in C. crescentus
occur even in the absence of MreB, and, when MreB is

present, the two helices do not overlap but are instead out of

phase (55). In any case, it is likely that MreB binds to proteins

that are largely immobilized.

Our model can be applied to these situations by consid-

ering the likely effects of dynamics. When a polymer grows

at a terminus, each monomer will, most likely, preferentially

adopt a configuration that is close to the lowest energy one

that is available. This could happen because reaction rates

into low-energy states are faster than those into high-energy

states; because monomers with high-energy configurations

would tend to dissociate rapidly; or through small rearrange-

ments on the membrane occurring after a monomer binds.

Whatever the mechanism, if the net growth of the polymer is

slow compared to the rates of reactions and rearrangements

at its terminus, equilibrium statistical mechanics assures us

that low-energy conformations will dominate the result (en-

tropic contributions are minor here because the only degree

of freedom is the bending angle of the terminal monomer).

Depending on the mechanical parameters, it was shown

above that minimum-energy growth structures are, or are

close to, the morphologies that minimize the curvature en-

ergy of the entire polymer. Thus, polymers are expected to

naturally grow into reasonably low-energy shapes. These ini-

tial structures should relax into even more mechanically favor-

able conformations if the polymer is at least somewhat mobile

within the membrane, or through a turnover of internal mono-

mers. The latter case is an example of a dynamic equilibrium

so any small rearrangements that are made in monomer posi-

tions will necessarily, on average, reduce the local free energy

of the polymer. Thus, our model was not defined with com-

positionally dynamic polymers, but such dynamics are a

mechanism by which polymers would be expected to adopt

mechanically favorable shapes. The rapid dynamics of the

MreB, MinD, and FtsZ polymers do not invalidate our model,

but actually allow it to be applicable despite their lack of free

movement within the plane of the cytoplasmic membrane.

MreB

It is relatively easy to find curvature values from fluores-

cence images. From the MreB image in Fig. 1 A, the ratio of

the spatial helix period to the helix diameter is ;3.0. As-

suming a typical E. coli cell diameter of 0.8 mm, this

corresponds to a helical density, r, of ;0.4 turns per micron.

Simple geometry converts this to the absolute angle of the

polymer on the cylinder surface,

2pRr¼ tanb; (12)

yielding b � 646�. Fig. 1 A is of a MreB-YFP construct

(15), which was shown to produce more extended MreB he-

lices than those from the wild-type protein. A statistical sur-

vey of random images of wild-type MreB found an average

helical density of 1.6 6 0.3 turns per mm (16), corresponding

to an absolute angle of 6 (76 6 3�). The absolute angle is

converted to the actual curvatures, which are then used to

infer the preferred curvatures. Because a helix is observed on

the cylindrical portion of the cell, Eq. 6 is used to find au �
�0.94/R and jacj � 0.23/R. Current models of MreB suggest

that the polymer does not apply strong inward or outward

forces to the membrane, but instead acts more like a scaffold

for membrane and cytoskeletal construction (4,56). If this is

the case, then our results on polymer forces imply that the

preferred curvatures are likely to lie near the cylinder con-

straint circle, meaning that they are close to the actual cur-

vatures. Two pieces of evidence suggest that the preferred

yaw angle is small. Firstly, Fig. 5 D shows that a polymer

with a b angle of 76� (;0.42p radians) would not form a

helix, but would target the poles, if jaf�j were .;0.24/R.

Also, the few published MreB images that reveal the polymer

shape on the cell poles (15,57) seem to show that the poly-

mer adopts great-circle shapes. Thus, we find that the intrin-

sic curvature values for an MreB protein are jaf�j , 0.24/R,

au� � �0.94/R, and jac�j � 0.23/R. Substituting in our

assumed radius of 0.4 mm and converting from radians to
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degrees yields intrinsic curvatures of jaf�j , 34�/mm, au� �
�135�/mm, and jac�j � 34�/mm. These results are listed in

Table 1 along with analogous results for other protein poly-

mers. Also shown are simulation results, using the inferred

parameters, which can be seen to compare favorably with ex-

perimental images.

The preferred curvature values allow predictions to be

made about MreB structures on different shape membranes.

On spherical cells, including minicells, the small af� value

implies that great-circle structures are expected. For the same

reason, MreB would be expected to form straight filaments

on a planar membrane, as one might create in vitro. In this

case, the polymer would apply a force to the membrane in the

direction that would cause it to curl toward the protein. On

mutant cells with diameters that are larger than normal,

MreB would be expected to exhibit a helix with a larger ab-

solute angle than usual and produce an inward force on the

membrane. Unusually small diameter cells would produce

the opposite effects.

MinD

Analysis of the MinD helices, using an average helix density

of 2.2 turns per mm (16), implies that the pitch-and-roll

curvatures for MinD are �0.96/R and 0.18/R, respectively.

As with MreB, it is expected that MinD does not exert a

significant force on the cell membrane, so these are also the

preferred curvatures. MinD is observed to both target cell

poles and form coils the length of the cell, suggesting that af�
is such that the MinD polymer parameters are close to both

the polar-targeting and helix phases of parameter space,

which is achieved when af� is 0.19/R. Our simulations

showed that this boundary of phase space is quite sharp since

slight differences in af� drove simulated polymers com-

pletely to either the polar or cylindrical portions of the cell.

Thus, either evolution has led MinD proteins to have pre-

cisely the correct shape so that they will polymerize onto

both the cell poles and the cell center or, more likely, ad-

ditional mechanisms are involved in targeting one end of the

MinD polymers to the cell poles (a factor that is also required

for dynamic models that have been described by Drew and

Cytrynbaum (58,59)).

Many studies have investigated MinD polymerization in

wild-type cells and in alternate systems, although it is hard to

reconcile the results with each other or with the theory pre-

sented here. On round E. coli cells, MinD is seen covering

entire membrane regions, in filamentous structures, and in

very small circles (16). The circle diameters suggest that af�
is ;700�/mm, which is 26 times the value estimated above.

In vitro, MinD polymerizes to form short straight filaments

in the absence of lipids (17); in the presence of lipid vesicles,

MinD tubularizes them, with MinD tightly wrapped around

their outsides (60). Neither in vitro result is consistent with

any of the others. Thus, there is clearly much more to learn

about MinD polymers.

FtsZ

As described in the Introduction, the FtsZ-dominated Z ring

exhibits remarkable dynamics during B. subtilis sporulation

in which it transitions from a ring to a helix, to a ring near

a pole, and then finally constricts. Our mechanical model

provides a plausible explanation for these changes.

Bacterial Z rings are not merely comprised of FtsZ, but also

FtsA, ZipA, ZapA, and many other proteins (8). Because

these proteins bind to FtsZ, they may affect its mechanical

properties. They might change the mechanics directly through

their incorporation into the Z ring or by causing the dominant

FtsZ proteins to switch between native structures (61).

Similarly, it has been proposed that phosphate release from

TABLE 1 Curvature parameters of polymers

r jbj jaf�j au� jac�j Diagram

Yfp-MreB* 0.4 46� , 0.64/R ; 92�/mm –0.52/R ; �74�/mm 0.50/R ; 72�/m

MreBy 1.6 76� , 0.24/R ; 34�/mm –0.94/R ; �135�/mm 0.23/R ; 34�/mm

MinDy 2.2 80� 0.19/R ; 27�/mm –0.96/R ; �139�/mm 0.18/R ; 25�/mm

FtsZ rings N 90� 0 –1/R ; �143�/mm 0

FtsZ helicesz 2.5 81� , 0.15/R ; 21�/mm –0.98/R ; �140�/mm 0.15/R ; 22�/mm

FtsZ contracting N 90� 0 , �1/R ; �143�/mm 0

Curvature parameters of protein polymers, inferred from fluorescence images. The value r is the helical density, b is the absolute angle of the polymer on the

cylinder surface, and af�, au�, and ac� are the preferred yaw, pitch, and roll curvatures, respectively. In all cases, the cell radius is assumed to be 0.4 mm. With

the exception of the FtsZ contracting line, it is assumed that the polymer exerts minimal inward or outward force on the cell membrane.

*Extended form, measured from Fig. 4 of Shih et al. (15).
yValue is from Shih et al. (16).
zMeasured from Fig. 1 of Ben-Yehuda and Losick (13).
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GTP hydrolysis by FtsZ could trigger deformation of FtsZ

filaments, which would cause Z-ring contraction (3,37). These

provide mechanisms for the cell-cycle regulatory network to

control the intrinsic curvature parameters of the Z ring: it

could vary expression levels of specific Z-ring proteins, or

control the FtsZ-GTP abundance through various reactions.

Perhaps SpoIIE or FtsA convert the Z ring from a ring to a

helix (13), other proteins from a helix to polar-targeted rings,

and phosphate release from GTP hydrolysis would create a

constrictive force that would invaginate the septum (62). This

hypothetical trajectory is illustrated in Fig. 6.

This mechanism relies on the observed rapid reassembly

of the Z ring (46) both for the shape transitions to occur, and

so that the cell cycle regulatory network could exert a tight

control over the Z-ring shape. It is also consistent with experi-

ments that showed that Z-ring depolymerization is not re-

quired for ring constriction (63), in contrast to some other

models (64). Finally, it agrees as well with observations that

the Z ring can constrict and deform the cell wall even if the

ring is incomplete or is a spiral (62).

CONCLUSIONS

We propose a simple mechanical model for membrane-bound

protein polymers. In it, polymers are characterized by their

flexural and torsional rigidities and by their intrinsic three-

dimensional curvature on the yaw, pitch, and roll axes. Mini-

mization of the bending energy of the polymers, while

constraining them to surfaces that have the same shape as

rod-shaped bacteria, produce five distinct classes of mor-

phologies: rings, lines, helices, loops, and polar-targeted cir-

cles. The specific low-energy shape that is achieved depends

on the values of the parameters, of which the preferred

curvatures are the most important. Many of these morphol-

ogies agree well with structures that have been observed for

membrane-bound protein polymers including FtsZ, MreB,

and MinD. While not investigated here, the shapes of Mbl,

MreC, ParA, LamB, TubZ, and many other membrane-bound

protein polymers are sufficiently similar that the same model

may apply to them as well.

Although the model definition does not specifically ad-

dress hindered movement of polymers on the cytoplasmic

membrane, or dynamic compositions of polymers, it is never-

theless consistent with these aspects of bacterial polymers. In

fact, it was shown that monomer (or protofilament) turnover

can promote the relaxation of polymers to low-energy struc-

tures despite hindered movement within the membrane.

Moreover, a changing polymer composition could provide a

mechanism for the bacterial cell-cycle regulatory network to

direct the structures of specific polymers. This was proposed

as a mechanism for several Z-ring transformations that occur

during B. subtilis sporulation, as well as for normal Z-ring

constriction.

It is unlikely that this simple mechanical model is the only

determinant of membrane-bound polymer shape. However,

the likely stiffness of cytoskeletal polymers make these

mechanics almost certain to contribute significantly. From

images of fluorophore-tagged protein polymers, it is straight-

forward to estimate the primary model parameters, which are

the intrinsic curvatures on each bending axis. These param-

eters can be used to predict polymer structures in new shapes,

including in elongated or round mutant cells, in vesicles, or on

a planar-supported bilayer.

APPENDIX

In this section, we present the mathematics for constraining polymers to

cylindrical or spherical curved surfaces, for both finite and infinitesimal

length monomers. It also applies to rod-shaped bacteria because they have

nearly cylindrical center sections and hemispherical ends.

We start by mapping a sequential pair of monomers from a plane to a

cylinder, shown in the left column of Fig. 7. These monomers each have

length l. Their directions, meaning the directions of the vectors that go from

the backs of the monomers to the fronts, relative to the x axis of the plane, are

b1 and b2. The angle between these directions is a. To map this bend from a

plane to a cylindrical surface, the ‘‘paper’’ on which the monomers are

drawn is creased so that the crease intersects the bend and is parallel to the

cylinder axis, which is taken to be the x axis. The paper is folded until the

monomer ends are at the cylinder surface, as shown at the bottom of Fig. 7;

the folding angle is denoted x. Note that the monomers are plane-parallel to

the portion of the cylinder surface that is directly below their centers.

Before the paper was folded, the relative direction of the second mono-

mer was a ¼ b2�b1, which can be thought of as the following process: start

with the monomers parallel, rotate the second monomer backwards by b1 to

the x axis, and then rotate forwards by b2. This process can also be expressed

with direction cosine matrices, Aplane ¼ Rz(b2)Rz(�b1), where Rz(f) is

the rotation matrix for rotation about the z axis by angle f,

RzðfÞ ¼
cf sf 0

�sf cf 0

0 0 1

2
4

3
5: (13)

For brevity, c is used for cosine and s for sine. An analogous process finds

the relative direction between the monomers after folding: start with the

FIGURE 6 A proposed model for the dynamics of the Z ring during B.
subtilis sporulation, shown as a trajectory in the three-dimensional parameter

space. Structures are: (a) ring, (b) helix, (c) polar-targeted rings, and (d)

constricting ring.
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monomers parallel, rotate the second monomer backwards by b1 to the x
axis, fold along the x axis by x, and then rotate the monomer around the new

z axis by b2. This is Acyl ¼ Rz(b2)Rx(x)Rz(�b1), which expands to

Acyl¼
cb1 cb2 1sb1 cx sb2 �sb1 cb2 1cb1 cx sb2 sx sb2

�cb1 sb2 1sb1 cx cb2 sb1 sb2 1cb1 cxcb2 sx cb2

�sb1 sx �cb1 sx cx

2
4

3
5:

(14)

The yaw, pitch, and roll angles are found from this direction cosine matrix

to be

af¼Atan
�sb1 cb2 1cb1 cx sb2

cb1 cb2 1sb1 cx sb2

; au¼Asinð�sx sb2Þ; and

ac¼Atan
sxcb2

cx
: (15)

For the continuous model, these are taken in the limit of short monomers that

have small bends between them. Using a as the polymer curvature on the flat

plane and b as the absolute direction on the plane (b1 and b2 become identical

in this limit), the yaw, pitch, and roll curvatures are found to be

af¼a; au¼�
sin

2
b

R
; and ac¼

sinbcosb

R
: (16)

The latter two equations represent the constraints that are imposed by the

cylindrical surface.

A similar procedure constrains a polymer to a spherical surface, shown in

the right column of Fig. 7. Monomers are drawn on a flat circle of paper and

the paper is made into a cone by removing a wedge that surrounds the first

monomer, and bringing the new edges together. The resultant cone bends the

monomers up from the x,y plane by angle x, which puts the monomer ends at

the surface of a sphere and leaves the monomers plane-parallel to the portion

of the sphere that is directly beneath their centers. Mathematically: start with

the first monomer correctly positioned in the sphere and the second

monomer parallel to it, rotate the second monomer about the y axis by –x to

bring it up into the x,y plane, rotate about the z axis (the axis of the cone)

by a9 ¼ a/cosx to achieve the proper left-right bend, and finally rotate it

again on the y axis by –x to bring it up to the cone. This is Asph ¼
Ry(�x)Rz(a9)Ry(�x), which is

Asph¼
ca9c

2
x� s

2
x sa9cx ca9cx sx1cx sx

�sa9cx ca9 �sa9sx

�ca9cx sx�cx sx �sa9sx �ca9s
2
x1c

2
x

2
4

3
5:
(17)

The yaw, pitch, and roll angles are

af¼Atan
sa9cx

ca9c
2
x� s

2
x
; au¼Asin

�ca9cx sx

�sx cx
; and

ac¼Atan
�sa9sx

�ca9s
2
x1c

2
x
: (18)

The short-monomer limit yields the polymer curvatures,

af¼a; au¼�
1

R
; ac¼ 0: (19)

Again, the latter two equations represent the constraints that are imposed on

a polymer, this time by a spherical surface.
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the actin cytoskeleton. Nature. 413:39–44.

19. Kratky, O., and G. Porod. 1949. X-ray analysis of free polymers. Rec.
Trav. Chim. Pays-Bas. 68:1106–1123.

20. Marko, J. F., and E. D. Siggia. 1994. Bending and twisting elasticity of
DNA. Macromolecules. 27:981–988.

21. Klenin, K., H. Merlitz, and J. Langowski. 1998. A Brownian dynamics
program for the simulation of linear and circular DNA and other
wormlike chain polyelectrolytes. Biophys. J. 74:780–788.

22. Langowski, J. 2006. Polymer chain models of DNA and chromatin.
Eur. Phys. J. E. 19:241–249.

23. Goldstein, H. 1980. Classical Mechanics. Addison-Wesley, Reading,
MA.

24. Flory, P. J. 1969. Statistical Mechanics of Chain Molecules. Inter-
science Publishers, New York.

25. Landau, L. D., and E. M. Lifshitz. 1986. Theory of Elasticity. Elsevier,
Oxford.

26. Gittes, F., B. Mickey, J. Nettleton, and J. Howard. 1993. Flexural
rigidity of microtubules and actin filaments measured from thermal
fluctuations in shape. J. Cell Biol. 120:923–934.

27. Yasuda, R., H. Miyata, and K. J. Kinosita. 1996. Direct measurement
of the torsional rigidity of single actin filaments. J. Mol. Biol. 263:227–
236.

28. Arai, Y., R. Yasuda, K.-i. Akashi, Y. Harada, H. Miyata, K. J. Kinosita,
and H. Itoh. 1999. Tying a molecular knot with optical tweezers. Nature.
399:446–448.

29. Tsuda, Y., H. Yasutake, A. Ishijima, and T. Yanagida. 1996. Torsional
rigidity of single actin filaments and actin-actin bond breaking force
under torsion measured directly by in vitro manipulation. Proc. Natl.
Acad. Sci. USA. 93:12937–12942.

30. Egelman, E. H. 1997. New angles on actin dynamics. Structure. 5:
1135–1137.

31. Forkey, J. N., M. E. Quinlan, and Y. E. Goldman. 2005. Measurement of
single macromolecule orientation by total internal reflection fluorescence
polarization microscopy. Biophys. J. 89:1261–1271.

32. Esue, O., D. Wirtz, and Y. Tseng. 2006. GTPase activity, structure, and
mechanical properties of filaments assembled from bacterial cytoskel-
eton protein MreB. J. Bacteriol. 188:968–976.

33. Bhanot, G. 1988. The Metropolis algorithm. Rep. Prog. Phys. 51:429–457.

34. Errington, J. 2003. The bacterial actin cytoskeleton. ASM News. 69:
608–614.

35. Esue, O., M. Cordero, D. Wirtz, and Y. Tseng. 2005. The assembly
of MreB, a prokaryotic homolog of actin. J. Biol. Chem. 280:2628–2635.

36. Erickson, H. P., D. W. Taylor, K. A. Taylor, and D. Bramhill. 1996.
Bacterial cell division protein FtsZ assembles into protofilament sheets
and minirings, structural homologs of tubulin polymers. Proc. Natl.
Acad. Sci. USA. 93:519–523.

37. Scheffers, D.-J., and A. J. M. Driessen. 2001. The polymerization
mechanism of the bacterial cell division protein FtsZ. FEBS Lett. 506:
6–10.

38. Holmes, K. C., D. Popp, W. Gebhard, and W. Kabsch. 1990. Atomic
model of the actin filament. Nature. 347:44–49.

39. Wolgemuth, C. W., Y. F. Inclan, J. Quan, S. Mukherjee, G. Oster, and M.
A. R. Koehl. 2005. How to make a spiral bacterium. Phys. Biol. 2:189–199.

40. Spakowitz, A. J., and Z.-G. Wang. 2003. Semiflexible polymer confined
to a spherical surface. Phys. Rev. Lett. 91:166102.

41. Arfken, G. B., and H. J. Weber. 1995. Mathematical Methods for
Physicists. Academic Press, San Diego, CA.

42. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling.
1988. Numerical Recipes in C. The Art of Scientific Computing.
Cambridge University Press, Cambridge, UK.

43. Larsen, R. A., C. Cusumano, A. Fujioka, G. Lim-Fong, P. Patterson,
and J. Pogliano. 2007. Treadmilling of a prokaryotic tubulin-like
protein, TubZ, required for plasmid stability in Bacillus thuringiensis.
Genes Dev. 21:1340–1352.

44. Raskin, D. M., and P. A. J. de Boer. 1999. Rapid pole-to-pole
oscillation of a protein required for directing division to the middle of
Escherichia coli. Proc. Natl. Acad. Sci. USA. 96:4971–4976.
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