
IEEE TRANSACTIONS ON MOLECULAR, BIOLOGICAL, AND MULTI-SCALE COMMUNICATIONS, VOL. 10, NO. 3, SEPTEMBER 2024 425

Modeling Diffusion Between Regions With
Different Diffusion Coefficients

Steven S. Andrews

Abstract—Biological systems often include spatial regions with
different diffusion coefficients. Explicitly simulating their physical
causes is computationally intensive, so it is typically preferable
to simply vary the coefficients. This raises the question of how
to address the boundaries between the regions. Making them
fully permeable in both directions seems intuitively reasonable,
but causes molecular motion to be simulated as active diffusion,
meaning that it arises from energy that is continuously added
to the system; in this case, molecules accumulate on the slow-
diffusing side. However, molecular motion in most biochemical
systems is better described as thermal diffusion, meaning that it
occurs even at equilibrium. This can be simulated by reducing the
transmission probability into the slow-diffusing side, which yields
the correct result that spatially varying diffusion coefficients that
arise from macromolecular crowding, changes in viscosity, or
other energy-neutral influences do not affect equilibrium molec-
ular concentrations. This work presents transmission coefficients
and transmission probability equations for simulating thermal
diffusion, including for cases with free energy differences and/or
volume exclusion by crowders. They have been implemented in
the Smoldyn particle-based simulation software.

Index Terms—Macromolecular crowding, diffusion, bio-
chemical simulation, particle-based simulation, molecular
communication.

I. INTRODUCTION

D IFFUSION coefficients in biological systems are not
uniform but vary depending on location. For exam-

ple, diffusion is generally fairly rapid in dilute solution,
about 4-fold slower in eukaryotic cells [1], and 15-fold
slower in bacterial cells [2]. Compared to the surrounding
cytoplasm, diffusion is faster in bacterial nucleoids [3] and
slower in phase-separated cytoplasmic droplets [4], [5]. Within
membranes, diffusion is slowed by lipid rafts [6] and by
nuclear diffusion barriers [7]. On larger size scales, diffusion
coefficients vary dramatically across the blood-air barrier in
vertebrate lungs and across the blood-brain barrier in verte-
brate nervous systems [8]. These varying diffusion coefficients
raise the questions: How do they affect chemical concentra-
tions and how can their effects be simulated accurately?
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At a fundamental level, diffusion of molecules that are
being investigated, here called probe molecules, arises from
thermal motions in the surrounding fluid. Their diffusion
coefficients are likewise affected by surrounding molecules,
which influence the viscosity of the medium, can act as
macromolecular crowders that occupy volume and obstruct
diffusive trajectories, and/or can bind to the probe molecules
which then slows their movement [1].

These physical behaviors can be treated either explicitly
or implicitly in simulations [9]. In the former case, the
surrounding molecules are included in the simulation and
their effects on diffusion emerge naturally from the simulation
results (e.g., [10], [11]); this is a good way to study these
effects but is very computationally intensive. In the alternative
implicit approach, the surrounding molecules are not included
in the simulation directly. Instead, their effects on the probe
molecules are accounted for by specifying the appropriate dif-
fusion coefficients in each spatial region (e.g., [8], [12], [13]).
This approach is more computationally efficient and adequate
in many cases but it requires modeling methods that can be
counterintuitive, and which are the focus of this work.

More specifically, this article focuses on how to model
interfaces between regions where diffusion coefficients differ.
The interfaces can represent membranes that separate well-
defined cellular compartments, of which cell and organelle
membranes are examples. They can also represent the
interfaces between compartments that are not separated by
membranes, where examples include the edges of lipid rafts,
cytoplasmic droplets, and bacterial nucleoids.

This work represents one of many algorithms that have
been developed for the Smoldyn biochemical simulator [14],
[15], [16], [17], [18], a particle-based modeling tool that has
found substantial use primarily in the biophysics and compu-
tational biology research communities (e.g., [19], [20], [21]).
Smoldyn is also finding increasing use in the emerging field
of molecular communications engineering [22], [23], where
the focus is on information transfer via diffusing particles in
engineered systems [24], [25], [26], [27]. Recent investigations
in each of these fields have highlighted the importance of
spatially varying diffusion coefficients in their respective
systems (e.g., [28], [29], [30]).

II. SYSTEM DEFINITION

Figure 1 illustrates the system that we focus on, which has
slow diffusion on the left side and fast diffusion on the right. In
this case, the difference arises from macromolecular crowders
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Fig. 1. Illustration of the system considered here, with crowders on the left
and none on the right. Probe molecules, shown in red, cross the interface from
the left side with transmission coefficient κL and transmission probability
PL, and from the right side with κR and PR .

on the left; they don’t affect diffusion in the interstitial spaces,
where the probe molecules have the same diffusion coefficient
on both sides, but instead create a lower effective diffusion
coefficient, meaning the diffusion coefficient when measured
over a long enough timescale that probe molecules are likely
to collide with crowders multiple times, because they obstruct
many potential diffusive trajectories [11], [31]. This work is
equally focused on systems that have different viscosities on
the left and right sides, which are shown to be equivalent below
and thus exhibit the same behaviors, but are harder to model
explicitly.

The two sides of the system are separated by an interface
at x = 0 that probe molecules, shown in red, are able to
cross. Their transmission through this interface is characterized
by the transmission coefficients κL and κR; κL represents
transmission from the left and κR represents transmission from
the right. These coefficients, which conceptually represent the
interface porosity, have units of length/time and range from
0 for a reflecting boundary to ∞ for a perfectly transmitting
boundary. As examples, transmission coefficients for lipid
bilayers include 3.5× 108 µm/s for potassium ions, 150 µm/s
for water molecules, and 0.014 µm/s for urea molecules [32].
No additional details about the interfaces, including their com-
position, thickness, or thermodynamics, affect the modeling
problem considered here.

For particle-based simulators, we assume the use of the
algorithms described in [14], [15], [16], which are imple-
mented in the Smoldyn software. In brief, the simulation
uses finite timesteps (∆t), molecules diffuse over each time
step with Gaussian-distributed displacements (rms step length
is s =

√
2D∆t where D is the diffusion coefficient),

and interfaces are infinitessimally thin. When a molecule’s
trajectory crosses an interface, the molecule is transmitted with
probability PL if it comes from the left and PR if it comes
from the right, and is otherwise reflected.

This work extends these algorithms to allow a molecule’s
diffusion coefficient to change upon transmission through the
interface. In doing so, I found that it was important that the
trajectory lengths of transmitted molecules are rescaled so that
the diffusion coefficient changes exactly at the interface rather
than at the start of the next simulation time step. To do so,
the trajectory length that is beyond the interface is multiplied

Fig. 2. Steady-state molecule distribution with 2-dimensional systems.
Crowders are shown in gray and probe molecules in red. (A) Crowders
were represented explicitly and the interface was fully transmitting in both
directions; the probe concentration was lower on the left. (B) Crowders were
implicit and the interface was fully transmitting in both directions; the probe
concentration was higher on the left. (C) Crowders were implicit and the
interface had equal transmission coefficients in the two directions and unequal
probabilities; the probe concentration was equal on the two sides. Tables show
values for the transmission coefficients (κ, in µm/s), transmission probabilities
(P), explicit crowder area occupancies (φ), effective diffusion coefficients
(D, in µm2/s), and steady-state numbers of probe molecules on each side
(N). Values in black were simulation input parameters and values in red are
simulation results. Numerical κ values were computed by inverting (13). See
Methods for details.

by the square root of the ratio of the new and old diffusion
coefficients.

For a system that has the same diffusion coefficient on each
side, [15] shows that the transmission probability ratio equals
the transmission coefficient ratio,

PL

PR
=

κL
κR

. (1)

That reference also gives exact equations for PL and
PR [15, eqs. (47)-(48)] as functions of the transmission
coefficients, diffusion coefficient, and simulation time step.

III. RESULTS

A. Explicit Simulation With Crowding

Informal observations often suggest that diffusing molecules
accrue in regions with slower diffusion coefficients. For exam-
ple, consider dust on the floor of a room. The dust is produced
reasonably evenly throughout the room and yet it builds up
near the edges of the floor. The obvious explanation is that
the dust has a fast diffusion coefficient in high-traffic regions
of the room and a low diffusion coefficient in low-traffic
regions, causing it to gradually migrate toward the edges. This
supports the notion that lower diffusion coefficients create
higher concentrations. This explanation turns out to be correct
in some situations, as shown below, but doesn’t apply to either
the system shown in Figure 1 or to most biochemical systems.
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Figure 2(A) shows the actual effect of different diffusion
coefficients on molecule concentrations, here with a simulated
system that was crowded on the left, empty on the right, and
had a fully transmitting interface (see Methods for simulation
details). This is a 2 dimensional system to make the image
easier to interpret; as shown below, dimensionality doesn’t
affect quantitative results. The crowders filled φ = 50% of the
area on the left and were treated explicitly.

I measured effective diffusion coefficients for the two sides
by quantifying mean square displacements for probe molecules
in nearly identical systems, where their sole differences were
that they were either fully crowded or fully uncrowded and
they used periodic boundaries to avoid confinement effects.
Those simulations showed that the diffusion coefficient on the
right side was equal to 10 µm2/s, in agreement with the value
programmed into the simulator, and decreased to 6 µm2/s on
the left due to the crowders.

Simulations of the complete system were run to steady-state,
meaning until there was no net flux of molecules across the
interface, at which point the probe molecule concentrations
were found to be substantially higher on the right side than
the left (values are shown as N in Figure 2(A)). Thus, the
decreased diffusion coefficient on the left does not correlate
with a higher equilibrium concentration of probe molecules,
but with a lower concentration. More precisely, the amount
of concentration decrease on the crowded side equaled the
volume occupancy by the crowders, implying that the probe
molecule concentrations in the accessible areas were the same
on both sides.

These results show that crowders have two independent
effects. They block diffusive trajectories, which slows effective
diffusion coefficients, and they occupy space, which decreases
overall equilibrium concentrations. This finding that crowders
don’t increase concentrations can be understood from ther-
modynamics: equilibrium concentrations depend only on free
energies and not on kinetics, and the crowders don’t affect the
energies of the probe molecules, so the crowders don’t affect
their concentrations. The same argument applies to varying
viscosities: viscosity does not affect probe molecule energies,
so it does not affect their concentrations. Section III-D expands
this analysis.

B. Simulators Exhibit Active Diffusion

Figure 2(B) shows a similar simulation, but with the crow-
ders replaced by a slower diffusion coefficient. Molecules
diffused with the same diffusion coefficients as above (6
µm2/s on the left and 10 µm2/s on the right), the interface
was again made fully transmitting in both directions (PL =
PR = 1), and the simulation was also run to steady-state. Its
result shows a substantially higher steady-state concentration
of probe molecules on the left. This contrasts the explicit
simulation result described above, implying that it represents
a different physical situation.

To quantify these results analytically, consider a thin layer
of thickness l on each side of the interface. The probability
that a molecule in the layer on the left of the interface
diffuses across the interface during the short time interval ∆t

is [33]
DL∆t

l2
. (2)

Multiplying by the concentration on the left side, CL, yields
the molecule flux from left to right. At steady-state, this must
equal the flux from right to left, which is derived in the same
way, leading to the steady-state equation

CL
DL∆t

l2
= CR

DR∆t

l2
. (3)

This rearranges to yield the steady-state concentration ratio

CL

CR
=

DR

DL
. (4)

This agrees with the simulation result (within stochastic noise).
A physical interpretation of these results is that the different

diffusion coefficients represent different amounts of molecule
energy, with fast-moving high energy molecules on the right
and slow-moving low energy ones on the left (e.g., the right
is hot and the left is cold). Over time, molecules tend to
settle into lower energy states, so the concentration on the left
increases. This is a steady-state result, but it does not represent
thermodynamic equilibrium because there is constant energy
flow; energy (e.g., in the form of heat) is constantly added to
molecules on the right and removed from those on the left. In
other words, this simulation represents active diffusion [34],
meaning that the diffusing particles are driven by energy that
is continuously added to the system, in contrast to the thermal
diffusion that is more commonly observed in biochemical
systems and discussed elsewhere in this work.

The analogy of dust in a room that was described above is
an example of active diffusion, where people walking through
the room provide the energy for dust to move from high-traffic
areas to low-traffic areas. Chladni plates, which are vibrating
surfaces on which sand or other particles accumulate along the
surface’s nodal lines [35], are another example. Both examples
obey the conditions presented in this section, so their steady-
state concentrations would presumably be described by (4).

C. Thermal Diffusion Implicit Simulation

To simulate thermal diffusion with implicit methods, one
needs to counteract the simulator’s tendency to exhibit active
diffusion. To do so, we define a virtual membrane at the
interface between the two regions and set the transmission
coefficients as needed to create the theoretically correct ther-
mal diffusion equilibrium concentration ratio. This ratio is
C ◦
L/C

◦
R , where degree symbols indicate equilibrium. It equals

1 if probe molecule energies are the same on both sides, which
is typical for varying viscosities or non-reactive crowders, and
is derived more generally in Section III-D.

The transmission coefficients are defined through the bound-
ary condition equation for the interface [15, eq. (5)]

DL
∂C (x , t)

∂x

∣∣∣∣
x=−0

= DR
∂C (x , t)

∂x

∣∣∣∣
x=+0

= κRC (+0, t)− κLC (−0, t). (5)

Here, each expression represents the net flux toward the left.
The first two expressions represent the net flux at the interface
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using Fick’s law and are equal due to conservation of mass.
The third expression represents the difference between the
total fluxes from the right and left, respectively. Here and
below, the concentration is only considered as a function of
one spatial dimension, x, because the interface doesn’t affect
the concentration in other dimensions.

At equilibrium, the concentration gradients on the two sides
are zero, as is the net flux, allowing the simplification

κRC
◦
R = κLC

◦
L, (6)

which rearranges to

κR
κL

=
C ◦
L

C ◦
R
. (7)

This shows, for example, that equal equilibrium concentrations
can be produced by using equal transmission coefficients.

For particle-based simulation, these transmission
coefficients need to be converted to transmission probabilities.
Following the procedure described in [15], we consider a
system that starts at equilibrium with concentrations C ◦

L
and C ◦

R , and then the simulator diffuses molecules over one
time step. It diffuses molecules according to the diffusion
coefficient for the region where the molecules begin, and
it ignores the presence of the interface initially. After
diffusing molecules, but before considering the membrane, the
concentration as a function of position is equal to (see [15,
eq. (43)])

C (1)(x ,∆t) =
C ◦
L

2
erfc

[
x

2
√
DL∆t

]
+

C ◦
R

2
erfc

[
−x

2
√
DR∆t

]
.

(8)

The first term represents molecules that diffuse from the left
and the second represents molecules that diffuse from the right.
Next, the simulator transmits molecules that diffused across
the interface with probability PL and PR , depending on which
side the molecule came from. The number of molecules that
the simulator transmits from the left to the right is the integral
of the first term of (8) from 0 to ∞ times PL. This result, and
the analogous one for transmission the other way, is (see [15,
eqs. (44)-(45)])

amount from left = PLC
◦
L

√
DL∆t

π
(9)

amount from right = PRC
◦
R

√
DR∆t

π
. (10)

These need to be equal at equilibrium. Combining them
with (7) yields the probability ratio

PL

PR
=

κL
κR

√
DR

DL
. (11)

This is one of the central results of this work, extending (1)
to account for different diffusion coefficients.

If there is no actual membrane, then κL = κR (and are both
as large as possible; see below), PL is equal to 1, and (11)
simplifies to

PR =

√
DL

DR
. (12)

Fig. 3. Comparison of simulation (dots) with numerically integrated results
(lines). In this simulation, 10,000 non-interacting molecules started at the far
right edge of a 2-dimensional system like that shown in Figure 2(C), and
were allowed to diffuse. The diffusion coefficient was 10 µm2/s for x ≥ 0
and 3 µm2/s for x < 0, and the interface was maximally transmitting in
both directions. Transmission probabilities were PL = 1 and PR = 0.55,
from (12). Transmission coefficients were κL = κR = 3.7 ·104 µm/s, found
by inverting (13). The y-axis shows numbers of molecules in each 10 nm wide
histogram bin at the four time points shown. Numerically integrated results
were computed using Mathematica and the boundary conditions from (5).

This probability was used to generate the simulation results
shown in Figure 2(C), where it is seen that this probability
leads to the correct thermal diffusion result (within stochastic
noise) that both sides of the system have the same probe
molecule concentrations at equilibrium. This figure was gen-
erated with the same diffusion coefficients as before.

These probabilities are also correct away from equilibrium
with the result that this algorithm is exact, meaning that its
results are statistically identical to those for the underlying
continuous-time model system. Figure 3 illustrates this by
showing good agreement between simulated and exact con-
centration profiles for a collection of molecules that all started
at the right end of the system at several time points. This
system again had fast diffusion on the right and slow diffusion
on the left, although with a larger difference to create a more
stringent test (3 µm2/s on the left and 10 µm2/s on the right).

If there is a membrane, then κL and κR have smaller values
and may differ from each other. In this case, PL is shown in
the appendix to be

PL =
κL

√
π∆t

c2
√
DL

(
−1 +

2c√
π
+ ec

2
erfc c

)
, (13)

where

c =
√
∆t

(
κR√
DR

+
κL√
DL

)
,

and PR is found from (11).
These equations typically return probabilities that are less

than 1, although they can also return larger values if the
transmission coefficients are substantially different from each
other and time steps are large. This reflects the fact that the
simulation method is not quantitatively accurate in this regime
due to the transmission rate being slower than it should be,
even if the transmission probability is equal to 1 [15]. As
an example of an error, suppose κL = 0, κR = ∞, and a
molecule starts just barely on the right side of the interface.
Ideally, the molecule would be essentially certain to cross the
barrier over any finite amount of time, but in any single time
step, the simulated crossing probability would only be up to
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50% due to the possibility of the molecule diffusing in the
opposite direction. The best solution to this problem is to cap
the larger probability value to 1 and to use (12) for the other
value. This produces the correct concentration ratio but lower
transmission rates than desired.

Inverting (11) and (13), of which the latter has to be done
numerically, yields κL and κR from PL and PR . If one of the
probability values is equal to 1, then this approach returns the
maximum simulated transmission coefficient that is possible
with the given time step. These values are listed in Fig. 2 and
the Fig. 3 caption.

D. Concentration Ratio Derivation

Here, we solve for the equilibrium concentration ratio,
which is required in (7). From thermodynamics, it depends on
entropic and enthalpic contributions (the enthalpy is essentially
identical to the energy for most biochemical contexts).

The entropic component simply reflects the accessible vol-
ume on the two sides of the system. In particular, for crowders
that occupy volume fraction φ, the accesible volume in some
region relates to the total volume of that region, V, as

Vacc. = (1− φ)V . (14)

Based on this, the ratio of the probabilities of a molecule being
on the left and right side of the system is

pL
pR

=
VL(1− φL)

VR(1− φR)
, (15)

where VL and VR are the volumes of the two sides.
The enthalpic contribution reflects the interactions of a

molecule with crowders or other components on the two
system sides. If the probe molecules only interact with crow-
ders by colliding with them, then this doesn’t affect their
enthalpies, and we can set HL = HR = 0. On the other hand,
probe molecules that do bind to the crowders have decreased
enthalpies. Likewise, probe molecule interactions with other
surrounding molecules, such as solvated ions, can also affect
enthalpies. For generality, we assume probe molecules have
enthalpies of HL and HR on the given sides; Section III-E
derives these values for incomplete binding to crowders.

The Boltzmann distribution states that the probability of a
molecule being in some state is proportional to e−H/kBT ,
where H is the enthalpy of the state, kB is Boltzmann’s
constant, and T is the absolute temperature (which must be
uniform throughout the system for equilibrium thermodynam-
ics to apply). In this case, the two states are the two sides
of the system. Thus, the enthalpic contributions lead to the
probability ratio

pL
pR

=
e−HL/kBT

e−HR/kBT
= e−∆H/kBT , (16)

where ∆H = HL − HR .
Multiplying the entropic and enthalpic probability contribu-

tions, and also dividing probabilities by volumes, yields the
equilibrium concentration ratio

C ◦
L

C ◦
R

=
1− φL
1− φR

e−∆H/kBT . (17)

For noninteracting probe molecules, this ratio is 1 for
uncrowded systems (Figure 2(C)) and represents the crowding
fraction for crowded systems (Figure 2(A)). Note that (17)
is independent of the diffusion coefficients, showing again
that differences in thermal diffusion coefficients do not affect
equilibrium concentrations. Also note that (17) is independent
of system dimensionality, thus validating the mixed use of 1D,
2D, and 3D within this work.

E. Enthalpies for Incomplete Crowder Binding

Unfortunately, (17) is rarely practical on its own because
only some fraction of the probe molecules are typically bound
to crowders at any given time. Thus, one needs to average the
binding enthalpy over all probe molecules, including both the
bound and unbound ones.

To account for this equilibrium condition, we start by
assuming the chemical reaction

X+ S
ka!
kd

XS, (18)

where X is a probe molecule, S is a binding site on a crowder
molecule, and ka and kd are the association and dissociation
rate constants. This reaction has dissociation constant Kd =
kd/ka , from which the binding enthalpy is

Hb = H std
b + kBT ln

Kd

C std
, (19)

where C std is a standard concentration and H std
b is the

binding enthalpy when the dissociation constant is equal to
that standard concentration.

If the scaled dissociation constant, Kd/C
std, is much less

than 1, representing tight binding, then this Hb is the HL
value from above (for crowders on the left) and the problem is
solved. Vice versa, if the scaled dissociation constant is much
more than 1, representing very weak binding, then this Hb
is irrelevant because the probe molecules aren’t spending a
significant amount of time bound to crowders anyhow; in that
case, HL can be set to zero and binding is ignored. For cases
in between these limits, we need to consider both the bound
and unbound states, which we solve next.

Once a molecule binds to a crowder, it spends a mean time
τb = 1/kd bound to that crowder before releasing. Then,
it spends a mean time τu = 1/(ka [S]) in its unbound state
before rebinding to another crowder, where [S] is the crowder
binding site concentration. Combining these, substituting with
the dissociation constant, and simplifying gives the fraction of
time that a molecule is bound to a crowder as

fb =
τb

τb + τu
=

[S]

Kd + [S]
. (20)

The bound and unbound states are mutually exclusive, so
the probability factor for a molecule being on the left side
of the system, exp(−HL/kBT ), is equal to the sum of the
probability factors for the bound and unbound states,

e−HL/kBT = fbe
−Hb/kBT + (1− fb)e

0/kBT . (21)
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The exponent in the latter term represents the fact that the
enthalpy of the unbound state is taken as zero. Rearranging
gives the left side energy term as

HL = kBT ln
Kd + [S]

Kd + [S] exp
(
−H std

b /kBT
)
C std/Kd

. (22)

It’s straightforward to check that this result has the correct
behavior in the limits of tight and weak binding, yielding (19)
and HL ≈ 0, respectively.

IV. CONCLUSION

This article addresses the question of how to efficiently
simulate molecular diffusion between regions that have differ-
ent diffusion coefficients. It shows that there is a distinction
between active diffusion, in which molecule motion is driven
by energy that is continuously added to the system, and
thermal diffusion, which occurs even at thermodynamic
equilibrium. This difference affects whether molecules accu-
mulate in regions with slow diffusion. Actively diffusing
molecules do accumulate because slower diffusion corre-
sponds to lower energies, while thermally diffusing molecules
do not accumulate because slower diffusion typically arises
from macromolecular crowding or higher viscosity, which do
not affect molecule energies.

Active diffusion can arise in both biochemical [34], [36] and
molecular communication [26] systems. In its case, (4) shows
that steady-state concentrations scale inversely with diffusion
coefficients. These results appear naturally in particle-based
simulations (Figure 2(B)).

On the other hand, biochemical and molecular commu-
nication systems are typically too small to have internal
thermal gradients, and do not drive molecules externally,
so their molecules diffuse thermally. In these cases, explicit
simulation (Figure 2(A)) of diffusion coefficient changes is
accurate but computationally expensive. This makes implicit
simulation (Figure 2(C)) generally preferable, but one needs to
counteract the simulators’ tendency to exhibit active diffusion.
This can be achieved as follows. (1) Compute the equilibrium
concentration ratio for the two regions; it is equal to 1 if
volume exclusion and binding enthalpy are negligible and
given by (17) for the general case. If there is weak binding
between the probe molecules and crowders, the enthalpy for
this equation is given by (22). (2) Compute the transmission
coefficient ratio from (7). (3) Compute the transmission
probabilities from (11) and either (12) for an interface without
a membrane or (13) for an interface with a membrane.

These new algorithms have been implemented in the
Smoldyn software. They are also accessible through the
surfacetransmit function in the public domain code
library SurfaceParam.c (included in the Smoldyn download
package). This function computes PL and PR from κL and
κR using (12) and (13). It can also invert this calculation to
return κL and κR from PL and PR , which it performs using
a greedy random walk algorithm.

V. METHODS

All simulations were run in Smoldyn 2.72 [16], [17]. Most
of the results shown in Figure 2 used the following simulation
parameters: crowders had a 5 nm radius and 1 µm2/s diffusion
coefficient; probe molecules were point-like to prevent inter-
actions between probes, had a 10 µm2/s diffusion coefficient
in most cases, and a 6 µm2/s diffusion coefficient on the left
side of panels B and C; the system was 200 nm long by 100
nm high with reflective boundaries and had a membrane in the
middle of the system; simulations investigated 11 ms of time
in 0.01 µs time steps; and there were 200 probe molecules
initially distributed evenly throughout the system. All simula-
tions were equilibrated for 1 ms before data collection and then
data were collected over the subsequent 10 ms. Simulations to
confirm the probe molecule diffusion coefficient on the right
side of Figure 2(A), and to measure the effective diffusion
coefficient on the left side of the same figure, were essentially
the same; however, their systems were reduced to only the
appropriate side of the full system and were given periodic
boundaries in order to remove confinement effects.

All simulation files obey MIRIAM guidelines [37] and are
available at the archive https://www.smoldyn.org/archive.

APPENDIX

Eqs. (9) and (10) describe how much concentration actually
crosses the interface during one simulation time step, using
transmission probabilities PL and PR . Equating this with
how much concentration should cross the interface during the
same amount of time, using transmission coefficients κL and
κR , creates equations that relate these sets of parameters. We
follow the procedure described in [15, Appendix B] to solve
the problem: suppose the concentration is 0 for x < 0 and is
CR for x > 0 at time 0; how much substance is in the x < 0
region of the system at time t?

The one-dimensional diffusion equation is

∂C (x , t)

∂t
= D(x )

∂2C (x , t)

∂x2
. (23)

Laplace transforming this, using CL(x , t) for the concentration
on the left, CR(x , t) for the concentration on the right, and
hats for their Laplace transformed versions, yields

− CL(x , 0) + z ĈL(x , z ) = DL
∂2ĈL(x , z )

∂x2
(24)

−CR(x , 0) + z ĈR(x , z ) = DR
∂2ĈR(x , z )

∂x2
. (25)

Boundary conditions for these equations include:

CL(x , 0) = 0 (26)

CR(x , 0) = CR (27)

ĈL(−∞, z ) = 0 (28)

ĈR(∞, z ) =
CR

z
. (29)

Simplifying (24) and (25) with these boundary conditions and
solving yields the general solutions with unknown constants
a and b,

ĈL(x , z ) = ae
x
√

z
DL (30)
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ĈR(x , z ) =
CR

z
+ be

−x
√

z
DR . (31)

Additional boundary conditions arise from the conservation
of flux over the interface, given by the Laplace transformed
version of (5),

DL
∂ĈL(x , z )

∂x

∣∣∣∣
x=−0

= DR
∂ĈR(x , z )

∂x

∣∣∣∣
x=+0

(32)

= κRĈR(+0, z )− κLĈL(−0, z ). (33)

These boundary conditions allow solution of a and b, yielding

a
√
DL = −b

√
DR =

CRκr

z
(√

z + κRD
−1/2
R + κLD

−1/2
L

) .

(34)

This is substituted into (30) and the result is integrated from
−∞ to 0 to yield

M̂ (z ) =

∫ 0

−∞
ĈL(x , z )dx =

CRκr z
−3/2

√
z + κRD

−1/2
R + κLD

−1/2
L

.

(35)

This inverse Laplace transforms to yield the desired solution

M (t) =
CRκRt

c2

(
−1 +

2c√
π
+ ec

2
erfcc

)
, (36)

where

c =
√
t

(
κR√
DR

+
κL√
DL

)
=

√
2
(
κ′L + κ′R

)
. (37)

This final expression uses reduced units, in which

κ′L =
κL

√
t√

2DL
κ′R =

κR
√
t√

2DR
. (38)

This solution can be used to find the transmission probabil-
ity for a particle-based simulator. Eq. (10) gives the amount of
substance that is actually transmitted in a simulation and (36)
gives the amount that should be transmitted. Equating these
two expressions and solving for the transmission probability
yields

PR =
κ′R

√
2π

c2

(
−1 +

2c√
π
+ ec

2
erfcc

)
. (39)

The corresponding PL equation is presented as (13).
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