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Abstract

Biological cells are complex environments that are densely packed with macromolecules and
subdivided by membranes, both of which affect the rates of chemical reactions. It is well known
that crowding reduces the volume available to reactants, which increases reaction rates, and also
inhibits reactant diffusion, which decreases reaction rates. This work investigates these effects
quantitatively using analytical theory and particle-based simulations. A reaction rate equation
based on only these two processes turned out to be inconsistent with simulation results. However,
accounting for diffusion inhibition by the surfaces of nearby obstacles, which affects access to
reactants, it led to perfect agreement for reactions near impermeable planar membranes and
improved agreement for reactions in crowded spaces. A separate model that quantified reactant
occlusion by crowders, and extensions to a thermodynamic ‘cavity’ model proposed by
Berezhkovskii and Szabo [25], were comparably successful. These results help elucidate reaction
dynamics in confined spaces and improve prediction of in vivo reaction rates from in vitro ones.

1. Introduction

Actively growing cells have been shown to be about
17 to 26 percent protein by weight [1], with the
implication that a similar fraction of a cell’s volume
is occupied by protein. Additional volume is occu-
pied by nucleic acids, ribosomes, and complex sugars.
Together, these result in a very crowded intracellular
environment that may be more physically similar to a
protein crystal or gel than the dilute laboratory solu-
tions that are typically used for in vitro experiments
[1].

This macromolecular crowding affects intracel-
lular dynamics in several ways (see reviews [2–6]).
It slows diffusion by about a factor of 5 to 10 [7,
8], it increases association reaction rate constants by
an order of magnitude or more [9], it favors folded
protein conformations over unfolded ones [5], and
it enhances the activity of chaperones [3, 10]. Most
theoretical explorations of these effects have focused
on thermodynamic considerations, including partic-
ularly the reduced translational and configurational
entropies of molecules that are in crowded systems
[11, 12]. This entropy reduction tends to decrease the
entropic benefits of dissociated states and unfolded

proteins, which then shifts equilibria toward associ-
ated states and folded proteins.

The effects of crowding can also be interpreted
with a kinetic viewpoint. For bimolecular reac-
tions, the reduction of available volume confines
the reactants into less space, so they collide with
each other more often than they would otherwise,
which increases reaction rates. Vice versa, crowd-
ing also inhibits molecular motion, which decreases
the rate at which reactants collide with each other
and thus decreases reaction rates. Minton described
these opposing effects of crowding on bimolecu-
lar reaction rates in 1990, predicting that volume
reduction would be more important at low crowd-
ing densities and diffusion reduction at high crowding
densities [13]. These predictions are qualitatively
supported by recent experiments [9, 14–20] and
modeling [21–24]. The only quantitative theory of
reaction rates in crowded environments that has been
reported so far is a model by Berezhkovskii and
Szabo [25], although it stopped short of a com-
plete description in terms of the system’s chemical
composition.

This work presents two new quantitative mod-
els that account for the combined effects of volume
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reduction and diffusion inhibition on bimolecular
reaction rates, as well as the effect of crowders on
reducing reactants’ access to each other. This last
effect is motivated by a simpler system, but one which
is also important on its own merits, which is a semi-
infinite space that is bounded on one side by an
inert planar surface. Molecules near this surface are
shown to react more slowly than those far from it. The
‘crowder proximity model’ addresses reduced reac-
tant access at relatively far distances from crowders,
and the ‘reactant occlusion model’ addresses reduced
reactant access very close to crowders. This work also
presents a completion to Berezhkovskii and Szabo’s
theory, here called the ‘cavity model’. All three mod-
els agree comparably well with simulation data that
were computed with the Smoldyn software, which
has been thoroughly validated in prior work [26–28].
Each model also helps elucidate the physics in useful
ways.

2. Theory

2.1. Reaction rates without crowders

This work builds on ideas introduced by Smolu-
chowski [29] and extended by Collins and Kimball
[30]. For the generic irreversible reaction A + B →
P, not including crowders, they showed that the rates
of diffusion-influenced reactions can be computed
using the radial distribution function of B molecules
about A molecules, given here as gB(r, t). Doing so
effectively defines a reference frame in which an A
molecule is permanently at the origin and surrounded
by B molecules that diffuse, in this reference frame,
with the sum of the diffusion coefficients for the sep-
arate A and B molecules, DA and DB; this sum is
called the mutual diffusion coefficient and denoted D

[31]. The A and B reactants contact each other when
their centers are separated by the ‘contact radius’,
σAB, which equals the sum of the reactants’ phys-
ical radii, σA and σB (all molecules are assumed
here to be spherical and rotationally isotropic, to dif-
fuse ideally, and to only interact upon contact; see
figure 1)(A). For simplicity, it is sometimes helpful to
assign the contact radius entirely to the A molecule,
effectively making it a sphere of radius σAB and the B
molecules into points (figure 1(B)); this is valid when-
ever the A and B concentrations are sufficiently dilute
that crowding interactions with other molecules of
the same species can be ignored, which we assume
here.

The radial distribution function is normalized to
approach 1 at large radii and evolves according to the
radially symmetric diffusion equation [32],

∂gB(r, t)

∂t
= −D

r2

∂

∂r

[

r2 ∂gB(r, t)

∂r

]

. (1)

It has an inner Dirichlet boundary condition,
gB(σAB, t) = 0, if reaction occurs immediately upon

Figure 1. (A) A reactive system with A molecules in red
and B molecules in blue, with respective radii σA and σB.
(B) A simplified version of the same system, now with an A
molecule at the origin acting as a sink that has radius σAB

and B molecules reduced to points.

contact as in the Smoluchowski model [29], or an
inner Robin boundary condition,

∂gB(r, t)

∂r

∣

∣

∣

∣

r=σ+AB

=
gB(σAB, t)

γ
, (2)

if contacting molecules have finite reactivity, as in
the Collins and Kimball model [30]. Here, γ repre-
sents surface reflectivity, ranging from 0 for molecules
that react upon contact, to infinity for molecules that
never react. A finite reactivity can arise from a reaction
activation energy or can represent orientational speci-
ficity for the reactants. It is often called the intrin-
sic reaction rate constant [31, 33], defined as kint =

4πσ2
ABD/γ.

The total reaction rate constant is the net influx
of B molecules toward A molecules measured at the
contact radius,

k(t) = 4πσ2
ABD

∂gB(r, t)

∂r

∣

∣

∣

∣

r=σAB

. (3)

Solving equation (1) for the steady-state radial dis-
tribution function, gB(r), and then using it to com-
pute the reaction rate constant with equation (3) leads
to the well-known Collins and Kimball reaction rate
equation [30, 34],

1

k
=

1

4πDσAB
+

1

kint
. (4)

The first term represents the time that reactants take
to initially find each other through diffusion and the
second is the additional time that they then take to
react. Reactions are said to be diffusion-limited if
the first term dominates and activation-limited if the
second term dominates. Alternatively, the degree to
which a reaction is diffusion-limited can be quanti-
fied with the ‘diffusion-limited fraction’, χ, defined
as

χ =
k

4πDσAB
. (5)

This value is 0 in the activation-limited extreme and
1 in the diffusion-limited extreme. It relates to γ as
χ = σAB/(σAB + γ).
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2.2. Crowder volume exclusion and diffusion

reduction

Now considering crowders, suppose they have num-
ber density ρC, are spherical, are all the same size
with radius σC, and cannot overlap each other
(figure 2)(A). Minton predicted that crowding accel-
erates reactions by reducing available volume, and
also slows reactions by slowing diffusion [13]; these
effects are considered in turn.

The fraction of system volume occupied by crow-
ders is the product of the volume for one crowder and
the crowder density,

φ =
4

3
πσ3

CρC. (6)

However, not all of the remaining volume is accessi-
ble to the centers of the reactant molecules because the
reactants have finite radii that keep their centers away
from the crowder edges [35] (figure 2(B)). Focus-
ing on the B molecules (the A molecules are iden-
tical, but we choose B molecules for concreteness),
define the fraction of the total system volume that
is excluded to the B molecule centers as φx(φ, σ̃B).
The tilde symbol implies a reduced radius in which
the radius is divided by the crowder radius, so σ̃B =

σB/σC. Clearly, φx(φ, σ̃B) > φ with equality only for
molecules that are point particles. Figure 2(C) shows
the relationship between φx(φ, σ̃B) and φ with differ-
ent curves representing different σ̃B ratios. The points
in the figure represent simulation data generated with
the SmolCrowd software [27], which creates systems
of randomly positioned spherical crowders that have
non-overlapping core regions and overlapping outer
regions, and then quantifies the excluded volume
(see methods). The curves in the figure were fit to
the simulation data using an empirical function form,
giving the relationship

φx(φ, σ̃B) ≈ 1 − exp
[

−φ(σ̃B + 1)3 − φ2

×
(

16.4σ̃2
B + 5.31σ̃B + 0.474

)]

. (7)

This fit is within 4% of all simulated values, which
extend over all biologically important crowding frac-
tions and all that are considered in this work, and can
be shown to approach exactness in the limits of small
φ and/or large σ̃B.

The law of mass action states that reaction rates
are directly proportional to each of the reactant con-
centrations [36], obeying the equation

d[A]

dt
= −k[A][B], (8)

where brackets indicate concentrations. Assume that
this applies within the portion of the system to which
the A and B molecules are confined by the crowders;
take this for now as the fraction 1 − φx(φ) of the
system volume. The observed reaction rate is always
measured with respect to the total system volume

rather than the accessible volume, so the concentra-
tions in equation (8) need to be corrected to account
for the different volumes. Doing so introduces a fac-
tor of [1 − φx(φ)]−1 on the right hand side of the
equation, implying that the crowders increase the
observed reaction rate constant by this factor; this is
the reaction rate increase for Minton’s theory [13].

A similar analysis applies if the A and B molecules
have different radii. Assume that the B molecules have
the smaller radii, so that their accessible region of the
system volume, V(1 − φB), is a superset of that which
is accessible to the A molecules, V(1 − φA), where V

is the total system volume and φA and φB are short-
ened versions of φx(φ, σ̃A) and φx(φ, σ̃B). Reactions
only occur in the portion of the volume that is accessi-
ble to both the A and B molecules, which is the region
accessible to the A molecules, so equation (8) becomes

d

dt

nA

V(1 − φA)
= −k

nA

V(1 − φA)

nB(1 − φA)/(1 − φB)

V(1 − φA)
,

(9)

where nA and nB are numbers of A and B molecules,
and the numerator of the last factor gives the number
of B molecules that are in the volume that is accessible
to A molecules. This simplifies to become the same as
equation (8), now considering concentrations relative
to the entire system volume, but with the reaction rate
constant increased by (1 − φB)−1. This means that the
effective volume for the reaction is the available vol-
ume for the less confined reactant. For convenience,
we define φx(φ) as the excluded volume for the less
confined of either the A or B molecules.

The crowders reduce diffusion coefficients, shown
in figure 2(D), because they physically block many
diffusive trajectories. Points in this figure were com-
puted by simulating diffusion of tracers, which had
the same radii as B molecules but did not partici-
pate in reactions, among immobile spherical crow-
ders using the Smoldyn software. Diffusion coeffi-
cients were then calculated from final mean square
displacement values (see methods). The lines in the
figure, which agree well with the simulation data, were
fit to a comparable data set in prior work [37]. They
represent the function

D(φ, σ̃B) = D0

[

1 − φx(φ, σ̃B)/0.955
]1.47

1 − φx(φ, σ̃B)
, (10)

where D0 is the diffusion coefficient in the absence
of crowders. This equation applies for φx(φ, σ̃B) from
0 to 0.955; the upper bound is the excluded vol-
ume fraction where diffusion becomes completely
stopped, which is called the percolation threshold.
Although not explored in this work, note that diffu-
sion coefficients are substantially larger if the crow-
ders are mobile [38].

Combining the effects for the reduced available
volume and slowed diffusion coefficients modifies
the Collins and Kimball reaction rate equation from
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Figure 2. (A) Diagram of a crowded system, shown with B molecules and gray crowders with respective radii σB and σC;
crowders occupy volume fraction φ. (B) An equivalent system showing the B molecule centers and the total volume excluded by
the crowders, now with effective radii σBC = σB + σC; they exclude volume fraction φx(φ, σ̃B). (C) Relationship between
occupied and excluded volume fractions for the σ̃B values shown. (D) Diffusion coefficients for B molecules with the σ̃B values
shown, with D0 = 10 µm2 s−1.

Figure 3. Effective reaction rate constants for (A) diffusion-limited and (B) nearly activation-limited reactions. Points are from
Smoldyn simulations and lines from equation (11). Parameters: σA = σB = σC = 0.5 nm and DA = DB = 10 µm2 s−1 for both
panels, and χ = 1 in panel (A) and 0.1 in panel (B).

equation (4) to

1

k(φ)
= [1 − φx(φ)]

[

1

4πD(φ)σAB
+

1

kint

]

, (11)

where D(φ) is the mutual diffusion coefficient in the
crowded environment, which is equal to D(φ, σ̃A) +
D(φ, σ̃B). Figure 3 compares this prediction with

simulation data for diffusion-limited and nearly
activation-limited reactions in crowded systems. Pre-
dictions and data agree in the limits of no crowding at
all (φ = 0) and so much crowding that diffusion com-
pletely stops (the percolation threshold, φ ≈ 0.25).
However, they disagree strongly elsewhere, showing
that the two effects included in this theory are inad-
equate to quantitatively explain how crowding affects
reaction rates.
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Figure 4. (A) A sink, in red, near an impermeable surface, in gray. B molecules, in blue, get absorbed by the sink. (B) A simplified
version of the same system, with the B molecule radii effectively added to the surface and sink. (C) A further simplification using
the method of images. (D) Contour plot of steady-state B molecule concentration about a sink. Note that contours are
perpendicular to the surface where they touch, as required by the reflecting boundary condition. (E) Relative reaction rate as a
function of distance from the surface. Red represents diffusion-limited (χ = 0.95 for the simulation data), orange is for χ = 0.7,
green is for χ = 0.5, and blue is for activation-limited (χ = 0.09 for the simulation data). Points are from Smoldyn simulations,
solid lines from theory, and dashed lines from equation (14).

2.3. Reaction inhibition by a planar surface

A third way that crowding affects reaction rates is
by reducing access to reactants. To investigate this
effect in isolation, we consider the reaction A + B
→ P in semi-infinite uncrowded space, bounded on
one side by an impermeable planar surface that is
located at x = 0. A single A molecule sink is fixed
at distance xA from this surface. B molecules diffuse
with diffusion coefficient D, and get absorbed by the
sink (figure 4(A)). We wish to solve for the steady-
state reaction rate constant while accounting for the
surface’s influence. This problem does not address
crowding directly but is a useful intermediate step, as
shown in subsequent sections.

As usual, it’s convenient to focus on the centers of
the B molecules rather than their edges, which effec-
tively moves the surface location to σB and increases
the A molecule radius to σAB (figure 4(B)). Define
CB(x) as the steady-state mean B molecule concentra-
tion at position x. It approaches the overall B molecule
concentration at large distances from the A molecule
but is smaller at closer distances due to absorption.
The system has a Neumann boundary condition at the
effective planar surface,

∂CB(x)

∂x

∣

∣

∣

∣

x=σB

= 0, (12)

to represent the fact that there cannot be con-
centration gradients perpendicular to impermeable
surfaces. As before, the sink has a Robin boundary
condition at the contact radius,σAB, to represent reac-
tions (equation (2)). The Neumann boundary con-
dition at the planar surface is easiest to address with
the method of images [39]. Here, this means that
a mirror image of the real system, including the A
molecule sink, is introduced on the unphysical side of
the surface. By symmetry, this modified system auto-
matically obeys the Neumann boundary condition at
x = σB, allowing the presence of the surface to be
neglected (figure 4(C)).

The steady-state concentrations (figure 4(D)) and
reaction rates have been solved exactly for this sym-
metric system, both for the case where reactants react
immediately upon contact [40] as in the Smolu-
chowski model, and where they have finite reactiv-
ity [41] as in the Collins and Kimball model. Both
solutions require that the sink does not touch the
planar surface (i.e. xA > σAB + σB), which I call the
unoccluded case. The former reaction rate is [40]

k(xA)

k0
= 1 −

∞
∑

m=2

(−1)m sinh µ0

sinh mµ0
(13)

where k0 is the reaction rate constant without the
surface and the µ0 parameter is determined from
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coshµ0 = (xA − σB)/σAB. The latter reaction rate, for
the Collins and Kimball model, is not repeated here
because it is complicated, but is described in reference
[41]. Figure 4(E) shows these analytic solutions with
red and orange solid lines. Both solutions are closely
approximated by

k(xA)

k0
=

[

1 +
χσAB

2(xA − σB)

]−1

, (14)

shown in figure 4(E) with dashed lines. This equation,
which I derived using a particle emission model as
described below, extends a result for the Dirichlet
boundary condition that is given in reference [40]
and, again, only applies for the unoccluded case.
Both the exact and approximate solutions agree well
with simulation results, shown in the figure with
points.

The occluded case occurs when the sink overlaps
the planar surface, meaning that the A molecule edge
is within a B molecule diameter of the surface. This
is harder to address but a few solutions can be found.
(1) When the center of the A molecule is exactly at
the effective surface, meaning xA = σB, the actual A
molecule sink exactly overlaps its image to make a
single sphere, so the reaction rate per sink is half
of that for a single isolated sink. This means that
k(σB)/k0 = 1/2. (2) The sink is inaccessible when
it is fully behind the surface, so it must have zero
reaction rate. This implies that k(xA) = 0 for xA 6

−σA or, equivalently, for xA − σB 6 −σAB. (3) In the
activation-limited extreme, CB(x) is the same every-
where, so absorption at the sink depends only on the
amount of exposed sink surface area. This means that
k(xA)/k0 = 1 in the unoccluded case and k(xA)/k0 =

(xA + σA)/2σAB in the occluded case (this is easily
derived from the surface area of a ‘spherical cap’,
which is 2πrh where r is the sphere radius and h is the
cap height). Figure 4(D) shows this last solution with
a blue line.

This analysis shows that the mere presence of an
impermeable surface can substantially decrease the
reaction rate constant for nearby molecules, even if
they are several radii away from the surface. This
reduced reactivity arises because the surface reduces
access to the side of a molecule that faces the sur-
face. This is apparent in figure 4(D), where the steady-
state B molecule concentration is low between the A
molecule and the surface and, further, has a very shal-
low gradient, which then implies a low reaction rate
(see equation (3)). As another view of the same phe-
nomenon, each A molecule is effectively competing
with its mirror image for B molecules, thus causing it
to absorb fewer B molecules than it would when far
from a surface. This decreased reactant access is espe-
cially acute in the occluded case, where part of one
reactant is completely inaccessible.

The finding that reaction rates are slower near
surfaces raises the intriguing possibility that cells

might control some reaction rates by regulating
the precise locations of reactive sites that are near
membranes. For example, cells could extend or retract
specific membane-bound receptors by small amounts
to modulate their rates of ligand binding. Also, cells
could reorient protein binding sites toward or away
from membranes to change their reactivities, using
the different gradients at the sink surface that are
shown in figure 4(D). I am not aware of examples
where there is evidence of these but the necessary pro-
tein conformational changes are well within the realm
of typical biochemical behaviors.

At least in principle, surfaces can also accelerate
reaction rates if molecules can adsorb and then diffuse
along the surface, due to reduction of dimensional-
ity effects [42, 43]. For example, if the B molecules
in figure 4 could reversibly adsorb to the surface,
and then diffused much faster along the surface than
they do in solution, then this would draw high B
molecule concentrations in close to the sink, leading
to a fast reaction rate. In practice, this is likely to be
a weak effect because adsorbed molecules typically
diffuse substantially more slowly than free molecules
[28, 44].

2.4. Crowder proximity model

Given that proximity to a planar surface slows reac-
tion rates by reducing reactant access to each other,
it makes sense that proximity to the multiple surfaces
of crowded systems would slow reaction rates in the
same way. This is an aspect of diffusion inhibition by
crowders but is independent of the slower diffusion
that was considered previously in equation (11). Ide-
ally, we would address this effect by computing the
influx rate for a sink that is surrounded by randomly
placed impermeable spheres.

However, this is impossible because equation (13)
does not generalize to spherical surfaces. Thus, we use
an approximate method instead, in which we invert
the problem to consider emission of B molecules out
of a point source instead of absorption of B molecules
into a sink. This inverted problem obeys the same dif-
fusion equation and has the same Neumann bound-
ary conditions at the crowder surfaces but has net
outward flow instead of net inward flow, and the con-
centration approaches zero at large distances instead
of a finite value. The only substantial change is that
the Robin boundary condition at the contact radius
(equation (2)) is ignored for now.

Consider an emitter at the origin that emits
B molecules at unit rate, and a spherical crowder
that has its center at distance r0 and has radius
σC (figure 5(A)). We focus on the centers of the B
molecules, giving the crowder an effective radius of
σBC = σB + σC. Dassios and Sten showed that the
Neumann boundary condition at the effective crow-
der surface can be addressed with the method of
images [45], much as before. In this case, there is a
‘point image emitter’ that is within the crowder and
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Figure 5. (A) An emitter at the origin, shown at x = 0 in black, and its image emitters within a spherical crowder, shown as a
black dot at x = r ′ for the point emitter and as a red line for the line emitter. (B) The total emitted B molecule concentration
measured along the x-axis at top and along y at x = r0 on the bottom. Dark bands represent the crowder, at the edges of which the
Neumann boundary condition is observed; internal concentrations are unphysical. (C) An emitter at the origin surrounded by
randomly positioned crowders, each of which has point and line emitters. (D) B molecule concentration as a function of radius
for the system shown in panel (C), for φ = 0.3. The blue line represents the concentration from just the central emitter, orange
represents the concentration from the image emitters, and black represents the total concentration. Dots represent data from
Smoldyn simulation using impermeable spheres rather than image emitters. Data were averaged over 10 random crowder
configurations; error bars show 1 standard deviation.

at distance r′ = r0 − σ2
BC/r0 from the origin, which

emits at rate qpt. = σBC/r0, and also a ‘line image
emitter’ that extends from r ′ to r0 and emits at a
continuous rate over its entire length with emission
density qline = −1/σBC. The line emitter emits at a
negative rate, which is mathematically sensible as
stated, or can be considered physically as emission
of anti-particles that anhiliate with normal particles
upon collision. The important aspect of these image
emitters is that adding them to the system creates
the same B molecule concentration as occurs with
the crowder at all positions outside of the crowder’s
effective surface, but without requiring the crow-
der itself. In particular, the concentration gradient
at the effective crowder surface is zero (figure 5(B)),
as required. Concentrations are different inside the
crowder, but these are unphysical and so can be
ignored.

We extend this image emitter solution to many
crowders (figure 5(C)) using a mean field approxi-
mation, replacing discrete point and line image emit-
ters for individual crowders with a density of point
and line image emitters for a density of crowders. In
the process, we only consider images that arise from
the B molecule emitter at the origin, while ignor-
ing higher order images of images. Normalized to an
overall crowder density ofρC = 1, the density of emis-
sion at radius r ′ from the origin that arises from point
image emitters is

qpt.(r′) =
4πr2

0dr0gC(r0)

4πr′2dr′
σBC

r0
=

σBCgC(r0)

r′2
dr0

dr′
,

(15)
where gC(r0) is the radial distribution function of
crowders about the origin. In the first equality, the
numerator of the first term gives the number of crow-
ders that have their centers between r0 and r0 + dr0,
the second term is the emission rate from these crow-
ders, and the denominator of the first term converts
the result back to a density at radius r ′. The r0 val-
ues in this emission density can be replaced using

r0 = (r′ +
√

r′2 + 4σ2
BC)/2, from the relationship

between r0 and r ′ given above, but this only compli-
cates the result. The density of emission at radius r ′

from line image emitters requires integration over all
of the crowders that contribute to line image emission
at this location, leading to

qline(r′) =
1

4πr′2

∫ r0

r′
4πr′′2gC(r′′)

−1

σBC
dr′′

= − 1

σBCr′2

∫ r0

r′
r′′2gC(r′′)dr′′. (16)

In the first equality, the integrand represents the line
emission at r ′ by crowders centered between r′′ and
r′′ + dr′′, it is integrated over all crowders that con-
tribute emission here, and the initial factor converts
the result to a density at r ′. The total density of
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emission at r ′, still normalized to unit crowder den-
sity, is the sum of these contributions,

q(r′) = qpt.(r′) + qline(r′). (17)

This image emitter density depends only on the
crowder locations and effective sizes, so it can be
evalulated from only knowledge of gC(r0) and σBC,
meaning that details about A molecules, reactions,
and all concentrations are unimportant here.

Next, we compute the steady-state B molecule
concentration, from both the emitter at the origin and
all image emitters. We do so with a Green’s function
approach, using the fact that the steady-state density
of emitted particles from a thin spherical shell of emit-
ters that is located at radius rs from the origin is [32]

C(r) =
1

4πD







r−1
s r < rs

r−1 r > rs

. (18)

Integrating this kernel over the actual density of emit-
ters, including the emitter at the origin and all of
the image emitters (equation (17)), gives the average
concentration of B molecules as

C(r) =
1

4πDr
+

ρC

D

[

1

r

∫ r

0
r′2q(r′)dr′ +

∫ ∞

r

r′q(r′)dr′
]

.

(19)

figure 5(D) shows the emitted particle density for the
case where σBC = 1 and gC(r0) is a step function that
is 0 for r0 < 2 and 1 for r0 > 2. The blue line repre-
sents the first term of equation (19) (from the emitter
at the origin), the orange line represents the second
term (from the image emitters), and the black line
represents their sum. Points in the figure show that
simulation results, which were computed with ran-
domly placed impermeable spheres rather than image
emitters, agree well with the theory.

Some transformations convert equation (19),
which is for B molecule emission from a source at the
origin, back to the desired radial distribution function
for a reactive sink at the origin. The sign is reversed
to change from emission to absorption, the concen-
tration is rescaled so that it obeys the desired Robin
boundary at the contact radius (which can now be
obeyed due to the spherical symmetry introduced by
the mean field approach), and the result is offset so
that the radial distribution approaches 1 at large radii.
Together these give

gB(r) = 1 − C(r)

C(σAB) + γC′(σAB)
, (20)

where C′(σAB) = dC(r)/dr|σAB . For example, if there
are no crowders, then C(r) = 1/4πDr, which trans-
forms to the radial distribution function gB(r) = 1 −
σ2

AB/r(σAB + γ), as it should be for the Collins and
Kimball model [26]. Substituting this transformation
into equation (3) gives the steady-state reaction rate
constant in terms of the concentration of emitted B

molecules,

k = −4πσ2
ABD

C′(σAB)

C(σAB) + γC′(σAB)
. (21)

If there are no image emitters within radius σAB, dis-
cussed below, then this reaction rate equation can be
expanded using equation (19) and then simplified to

1

k
=

1

4πDσAB
+

1

kint.
+

ρC

D

∫ ∞

σAB

r′q(r′)dr′. (22)

The first two terms are the same as those in the Collins
and Kimball reaction rate equation, equation (4),
while the last term is new and accounts for inhibited
reactant access from nearby crowder surfaces. Define
Q as a scaled version of this new term,

Q =
1

σ2
BC

∫ ∞

0
r′q(r′)dr′, (23)

where the lower integration limit was reduced to
0 for simplicity but did not change the integral’s
value because of the assumption of no image emit-
ters within σAB. This is a unitless number that quan-
tifies the amount of reactant access decrease that arises
from nearby crowders.

Equation (22) is based on image emitters rather
than actual crowders, so it does not account for either
the excluded volumes of the crowders or their effects
on diffusion coefficients. We include these effects in
the same way that we did for equation (11) to give a
final reaction rate equation for irreversible reactions
in crowded environments,

1

k(φ)
= [1 − φx(φ)]

[

1

4πD(φ)σ
+

1

kint .
+

ρCQσ2
BC

D(φ)

]

.

(24)

This is the complete equation for the reaction rate
in what I call the ‘crowder proximity model’, now
accounting for crowder volume exclusion, diffusion
inhibition, and inhibited reactant access.

We still need to compute Q, which comes from the
crowder radial distribution function, gC(r0). Ignor-
ing the structured layers that arise in densely packed
hard spheres [46], the obvious first-order approxima-
tion is that crowders should be well mixed but cannot
overlap A molecules. In other words, gC(r0) should be
a step function that is 0 for r0 < σAC (where σAC =

σA + σC) to account for the excluded volumes of the
A molecules and crowders, and 1 for larger r0 values,

gC(r0) =

{

0 r0 < σAC

1 r0 > σAC

}

(25)

However, this does not work in the theory devel-
oped here because a crowder at σAC would have a
point image emitter at σAC − σ2

BC/σAC, which may
be inside of σAB; this violates an assumption made
when deriving equation (22). Physically, the problem
is that the theory only works for the unoccluded case
in which the sink, which has radius σAB, does not
overlap the effective surface of the crowder, which has
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Figure 6. Reaction rates as a function of crowding for different parameter values. Points represent simulation data, black lines
represent a model that ignores crowding effects on reactant access (equation (11)), red lines represent the crowder proximity
model (equation (24)), blue lines represent the reactant occlusion model (equation (31)), and light green lines represent the
cavity model (equation (36)). (A) Diffusion-limited reactions with all species the same size: χ = 1, σA = σB = σC = 0.5 nm. (B)
Nearly activation-limited reactions with all species the same size: χ = 0.1, σA = σB = σC = 0.5 nm. (C) Diffusion-limited
reactions with larger crowders: χ = 1, σA = σB = 0.5 nm, σC = 1.5 nm. (D) Diffusion-influenced reactions with point-like B
molecules: χ = 0.5, σA = 1 nm, σB = 0 nm, σC = 0.5 nm. In all cases, A and B diffusion coefficients were 10 µm2 s−1 and their
interaction radius, σAB, was 1 nm.

radius σBC. In other words, each A molecule must be
far enough from each crowder that a B molecule can
fit between them. To address this problem, we move
the step in the crowder radial distribution function,
equation (25), outward to σABBC = σA + 2σB + σC.
This now satisfies the assumption of the unoccluded
case, but we recognize that the result will underesti-
mate the amount of reactant access inhibition. With
this change, Q evaluates to

Q = −1

6

[

2ν3 ln

(

1 − 1

ν2

)

+ ln

(

ν − 1

ν + 1

)

+ 2ν

]

,

(26)

where ν = σABBC/σBC. For example, if σA = σC, then
ν = 2 for all σB values, and Q = 0.283.

Red lines in figure 6 compare the theoretical reac-
tion rate constant from equation (24) with simula-
tion data, shown with points. Agreement is reason-
ably good for low to medium crowding densities over
a wide range of system parameters, including differ-
ent relative sizes of σA, σB, and σC, and different
amounts of diffusion influence on reactions. How-
ever, as expected, the theory underestimates reactant
access inhibition at high crowding densities, yielding
reaction rate predictions that are too fast.

2.5. Reactant occlusion model

There is no simple way to account for the effects of
reactant occlusion (figure 7(A)) for general reactions.
However, an approximation is possible if the reaction
is activation-limited because the rate is then directly
proportional to the exposed effective surface area of
the reactants, as shown above in section 2.3 (see the
blue line in figure 4(E)). We follow this approach
here. As usual, we transfer the B molecule radii to the
sink and crowders, giving them radii σAB and σBC,
respectively (figure 7(B)).

When a sink and crowder overlap, the occluded
portion of the sink is a spherical cap. The area of a
spherical cap is Acap = 2πr2(1 − cosθ), where r is the
radius and θ is the polar angle. In this case, r = σAB

and θ can be found from the law of cosines, which
together give the cap area as

Acap(r0)

=







2πσ2
AB

(

1 +
σ2

BC − r2
0 − σ2

AB

2σABr0

)

r0 6 σABBC

0 r0 > σABBC







,

(27)

where r0 is the distance between the sink and crowder
centers.
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Figure 7. Reactant occlusion model. (A) An A molecule (red) that is close to a crowder (gray), with nearby B molecules (blue).
The B molecule touching the A molecule and crowder cannot get further in between them. (B) The same molecules, but with B
molecule radii transferred to the A molecule and crowder. The black ‘occluded area’ is inaccessible to B molecule centers.

The average fraction of a sink’s surface area that
is occluded, Aocc./Atotal, can be estimated by adding
the cap areas for a mean field of crowders, and then
dividing by the total sink surface area,

Aocc.

Atotal
=

1

4πσ2
AB

∫ ∞

0
4πr2

0ρCgC(r0)Acap(r0)dr0. (28)

Substituting in equation (25) for gC(r0), equation (27)
for Acap(r0), integrating, and then simplifying yields

Aocc.

Atotal
=

φσ3
B

σ3
C

(

1 +
3σCσABC

σBσAB

)

. (29)

The mean field approximation is valid for low crowd-
ing densities but becomes inaccurate at high densities
for two reasons. First, it ignores the restriction that
crowders cannot overlap each other, with the result
that it includes crowders at impossible locations. Sec-
ond, reactant surface regions that are occluded by
multiple crowders at once are included separately in
the integral, despite the fact that an occluded region
of the surface cannot be occluded again. These errors
can be seen in the fact that equation (29) is directly
proportional to φ, causing it to predict that suffi-
cient crowding can cause more than 100% of a sink
to become occluded, which is obviously impossible.
These limitations cause equation (29) to overestimate
the occluded surface area fraction.

For activation-limited reactions, the reaction rate
simply scales with the accessible reactant surface area,
making it equal to

k(φ) = k0

(

1 − Aocc.

Atotal

)

, (30)

where k0 is the reaction rate without crowders. Com-
bining equations (11), (29) and (30) yields the reac-
tion rate predition for the ‘reactant occlusion model’,

1

k(φ)
=

[

1 − φσ3
B

σ3
C

(

1 +
3σCσABC

σBσAB

)]−1

×
[

1 − φx(φ)

4πD(φ)σAB
+

1 − φx(φ)

kint

]

.

(31)

Figure 6 shows these predictions with blue lines. As
expected, they are reasonably accurate for activation-
limited reactions (figure 6(B)) with low crowding and
then underestimate reaction rates with high crowd-
ing. Also as expected, this model predicts that crow-
ders do not reduce access to reactants at all when the B
molecules are point particles (figure 6(D)); this over-
estimates reaction rates because it ignores the reduced
access that arises in the unoccluded case. The model is
surprisingly accurate for other diffusion-limited reac-
tions (figures 6(A) and (C)), where it was not expected
to apply at all.

2.6. Cavity model

The previously published model for reaction rates
in crowded systems, by Berezhkovskii and Szabo,
considers the region between A molecule sinks and
nearby crowders as a cavity [25] (figure 8). Using
the terminology and notation introduced above, the
mutual diffusion coefficient is D within the cavity and
D(φ) outside of it. The cavity also acts as a poten-
tial energy well that creates an effective attractive force
between A and B reactants. The authors solved the dif-
fusion equation for this model to give the reaction rate
as

1

k(φ)
=

[

1

kint
+

1

4πD

(

1

σAB
− 1

Rc

)]

× e−β∆U
+

1

4πD(φ)Rc
, (32)

where ∆U is the energy well depth, β is 1/(kBT) in
which kB is Boltzmann’s constant and T is the temper-
ature, and Rc is the cavity radius. They left ∆U and Rc

as unsolved parameters. The authors also presented
a more general model that accounts for molecule
adsorption and diffusion on crowders, which we do
not consider here.

There is no actual energy difference between
regions inside and outside of the cavity under the
assumptions used here and in their work, but it is
reasonable to consider a Helmholtz free energy dif-
ference,

∆F = ∆U − T∆S, (33)
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Figure 8. Cavity model. A cavity is defined about an A
molecule (red) that extends out to the nearest crowders
(gray). It acts as a potential energy well for B molecules
(blue), which also diffuse faster within the cavity.

where ∆S is the entropy difference. Thus, we replace
∆U in equation (32) with ∆F. Consider equal
total volumes of crowded and uncrowded spaces,
both given as V. A molecule that moves from the
uncrowded space to the crowded space moves from
an accessible volume of V to an accessible volume of
V[1 − φx(φ)]. If intermolecular forces can be ignored,
as in an ideal gas, and the system is at constant temper-
ature, then this transition corresponds to an entropy
change of

∆S = kB ln
V[1 − φx(φ)]

V
. (34)

Under the assumption that the energy difference is 0,
equations (33) and (34) combine to give

e−β∆F
= 1 − φx(φ). (35)

This reaction acceleration factor agrees with the result
derived above from kinetic arguments.

Substituting this reaction acceleration factor into
equation (32) and rearranging leads to our ‘cavity
model’ prediction,

1

k(φ)
=

1

4πD(φ)Rc
+

1 − φx(φ)

kint

+
1 − φx(φ)

4πD

(

1

σAB
− 1

Rc

)

. (36)

This equation is structurally similar to the crowder
proximity model result, equation (24), but has some
important differences with regard to which terms
include reaction acceleration factors and which use D

versus D(φ). Here, the first term represents the time
for a B molecule to diffuse to the edge of the cav-
ity, the third term presumably represents the time
to go from the cavity edge to the A molecule, and
the second term represents the time to react after the
initial collision.

We define the cavity radius, Rc, as the mean radius
around an A molecule within which there is one crow-
der or, equivalently, multiple parts of crowders that
add to one. Using this definition and the crowder
radial distribution function from equation (25),

1 =

∫ Rc

0
4πr2

0ρCgC(r0)dr0 =
4πρC

3

(

R3
c − σ3

AC

)

,

(37)
which rearranges to

Rc = σAC
3

√

1 +
1

φ
. (38)

This radius expands as φ−1/3 for low crowding frac-
tions and is on the order of σAC for high crowding
fractions, both as expected [25].

Figure 6 shows this cavity model prediction with
light green lines. Overall, it appears to be some-
what better than the other theories, but not substan-
tially. Minor changes in the cavity radius definition,
such as omitting the first term under the radical in
equation (38), did not change results appreciably.

3. Discussion

Minton described two opposing effects of macro-
molecular crowding on bimolecular reaction rates,
which were that volume exclusion should acceler-
ate reactions and diffusion inhibition should slow
them. This work addresses the topic quantitatively
and finds that a simple interpretation of these effects,
equation (11), disagrees with simulation results, sub-
stantially overestimating reaction rate constants. To
investigate the possibility that this error arises from
neglecting the effect of crowders on nearby reac-
tants, this work considers reaction rates for molecules
that are fixed near planar surfaces. Surface proxim-
ity is found to substantially slow reactions, given
in equations (13) and (14), even when reactants
are several radii away from the surface. It slows
reactions even more if the surface is close enough
to block access to part of a reactant, here called
the occluded case. Applying this surface proximity
effect to macromolecular crowding using a mean
field approximation yields a more accurate reaction
rate equation, equation (24). This ‘crowder proxim-
ity model’ agrees reasonably well with simulations for
low crowding densities but still overestimates reac-
tion rates at high densities because it only addresses
the unoccluded case. A different ‘reactant occusion
model’, equation (31), takes the opposite approach
by only considering reactant occlusion by crowders.
This model also agrees reasonably with simulations
at low densities but diverges at high densities, in part
because it overcounts reactant occlusion. Finally, this
work completes a ‘cavity model’ that was introduced
previously [25], yielding equation (36), finding that it
performs comparably with the other models.
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Even if the crowder proximity model addressed
the occluded case correctly, other approximations
would likely cause errors, albeit smaller ones. (1)
The mean field theory given in equation (17) only
includes images of the central emitter, while ignor-
ing higher order images of images. The first order
images in each crowder have positive emission toward
the origin and negative emission away from the ori-
gin, so their images would add to the existing surface
effect to make it stronger. This means that account-
ing for these effects would reduce predicted reac-
tion rates. However, the total emission from each
crowder adds to zero, making it unlikely that these
higher order images would have a large effect. Fur-
ther, simulation and theory agreed well for a cen-
tral emitter (figure 5(D)), again suggesting that this
effect is minimal. (2) The mean field theory treats
every crowder as an isolated sphere of the same size,
ignoring the fact that the effective radii of multi-
ple crowders can overlap each other to create larger
obstacles (figure 2(B)). These larger obstacles have
less total surface area than the individual crowders,
but are nevertheless more effective at reducing access
to reactants because molecules cannot go between
them anymore but instead have to diffuse a longer
distance to get around them (note the σ2

BC depen-
dence in equation (24)). Accounting for this effect
would also reduce predicted reaction rates. (3) The
crowder radial distribution function, equation (25),
ignores reaction inhibition that is caused by crow-
ders. This reaction inhibition decreases reaction rates
close to the crowders, enabling reactants that are close
to crowders to survive longer. As a result, crowders
are statistically closer to reactants than assumed here.
Again, accounting for this effect would reduce pre-
dicted reaction rates.

The reactant occlusion model has more serious
flaws. It ignores the restriction that crowders cannot
overlap each other, it counts occlusion by multiple
crowders separately despite the fact that any portion
of the reactant effective surface can only be occluded
once, and it ignores reaction inhibition for the unoc-
cluded case. If the first two issues could be fixed,
then it would presumably be an accurate model for
activation-limited reactions as, in fact, a large fraction
of biochemical reactions are [31].

The more abstract nature of the cavity model
makes it harder to analyze or improve upon, but it is
nevertheless a promising theory for future work. Fur-
ther, its simplicity makes it attractive for generalizing
to a broader range of interactions, such as the original
authors’ inclusion of reactant adsorption to crowders
[25].

It would be nice to compare these theoretical
predictions with experiment, but existing experi-
mental data are unfortunately inadequate due to
lack of breadth of parameters investigated, insuffi-
ciently characterized reaction dynamics, and/or pres-
ence of artifacts from non-specific binding or other

contributions [12]. Instead, simulations are the only
method currently available for producing data that
can test these theories quantitatively. The Smoldyn
software [26, 27, 47] is particularly well suited for
these types of simulations because it is fast and accu-
rate, has the necessary features (such as generating
randomly distributed non-overlapping crowders and
computing radial distribution functions), and does
not impose a lattice on the system, which can intro-
duce substantial artifacts [48]. Also, all of its algo-
rithms approach exactness as simulation time steps
are reduced toward zero, enabling one to make results
as accurate as desired (here, time steps were always
reduced until results stopped changing in order to
achieve nearly exact results; see methods). Green’s
function reaction dynamics (GFRD) [49–52] meth-
ods would be an alternate approach, and have the
benefit of being actually exact, but are impractical
because they run several orders of magnitude slower
than Smoldyn for systems with this level of complex-
ity [24, 53]. Other options include the ReaDDy [54,
55] and SpringSaLaD [56] packages, both of which
offer good accuracy but, again, tests showed that they
run several orders of magnitude slower [53].

It would be straightforward to extend the first
two models developed here to account for crowders
with a distribution of sizes rather than the single
size assumed here. In the crowder proximity model,
each crowder in the distribution could still be rep-
resented with point and line image emitters, and
the effects of those emitters would still add linearly
(this approach also works for non-spherical crow-
ders but would become much more complicated). At
the end, the only change would be that the single
crowder number density value, ρC, would be replaced
by a separate density for each crowder size or with
a density function, ρC(σC). Adding or integrating
over these would then yield the surface effect term
for equation (24). Likewise, the reactant occlusion
model could be extended by generalizing the integral
in equation (28) to work with multiple crowder sizes.
The cavity model already applies to mixed crowder
sizes (and non-spherical crowders).

On the other hand, it may be more difficult to
extend these results to account for mobile crowders
which are, of course, much more physically realistic.
Preliminary investigations showed that both the start-
ing theory, equation (11), and the crowder proxim-
ity model, equation (24), overestimate reaction rates
even at very low crowding densities when the crow-
ders diffuse. It’s conceivable that this discrepancy
arises from mobile crowders being more effective at
reducing access to reactants than stationary crowders,
making the third term in equation (24) too small.
However, this seems unlikely because mobility would
presumably make crowders less effective at restrict-
ing access to reactants, rather than more effective. A
more likely explanation is that the reaction acceler-
ation factor, [1 − φx(φ)]−1, which applies to all of
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the terms in equation (24), is too large for mobile
crowders. In other words, mobile crowders effectively
remove less volume from the system than their actual
excluded volume, perhaps because their motion con-
stantly opens up new volume, even while removing
other volume. As an extreme example, an immobile
water molecule would reduce the system volume that
is available to proteins, but normal diffusing water
molecules do not. The same arguments apply to the
other models.

Two primary goals of this work were to build a
deep understanding of reactions in crowded spaces
and to create a theory that enables one to accurately
convert between reaction rates in intracellular envi-
ronments and those measured in dilute solutions. The
work described here does not achieve either goal in its
entirety but is a significant step in the right direction.
It is substantially better than a previous theory, shows
what types of effects are likely to be important, and
identifies topics for further study.

4. Methods

Fields of randomly located crowded spheres were gen-
erated with SmolCrowd version 2 [27, 28]. These
spheres had inner portions with radius σc that
did not overlap and outer portions with radius
σBC that could overlap (typically, σC = 0.5 nm and
σBC = 1 nm). SmolCrowd’s algorithm is that it adds
randomly placed spheres to the system volume one
at a time, rejecting trial locations that would produce
inner-portion overlap with an existing sphere. After
many sequential failed trials (equal to ratio of the sys-
tem to sphere volumes), SmolCrowd removes a ran-
domly chosen sphere, and then returns to trying to
add more. It continues until the requested crowding
fraction is achieved. It ignores the existing sphere dis-
tribution when generating trial locations and when
removing spheres in order to preserve an unbiased
random crowder distribution.

SmolCrowd computed the occupied volume frac-
tion, φ, using equation (6) and the excluded vol-
ume fraction, φx(φ), by randomly choosing 105

points within the simulation volume and determin-
ing what fraction of them were within σBC of a sphere
center. In simulations that had a central emitter
(e.g. figure 5(D)), spheres were prevented from hav-
ing their inner edges within 1 nm of the ori-
gin or their outer edges beyond 10 nm from the
origin. Other simulations used periodic bound-
ary conditions, for which SmolCrowd duplicated
all spheres that overlapped system boundaries as
needed.

Diffusion and reaction simulations were run with
Smoldyn version 2.61 [27, 47] using a cubical system
that was 50 nm on each side, typically with periodic
boundary conditions. All of Smoldyn’s algorithms
approach exactness in the limits of short time steps,
so simulations were made accurate by reducing time

steps until simulation results stopped changing, and
also did not change with a further 5-fold reduction in
time step lengths; time steps ranged from 0.0002 µs
to 0.005 µs. Simulations ran until all A molecules
had reacted or for 10 µs of simulated time, whichever
came first. Smoldyn represented the crowders gener-
ated by SmolCrowd as immobile reflective spherical
surfaces; the most crowded simulations used about
63 000 crowders. Simulations typically started with
1000 each of A, B, and tracer molecules, each repre-
sented as simple points. Each diffused at 10 µm2 s−1,
which is a typical intracellular diffusion coefficient
[7]. The tracers did not interact with other molecules
but were included to measure diffusion coefficients,
which was done by quantifying their mean square
displacements, 〈x2〉, and computing the diffusion
coefficient from D = 〈x2〉/6∆t where ∆t is the sim-
ulation time. Mean square displacements generally
increased linearly over time, showing normal diffu-
sion, although some anomalous subdiffusion [57–59]
was observed for excluded volume fractions of 0.9 and
above. The fact that diffusion was predominantly nor-
mal is consistent with the use of monodisperse crow-
ders and simulations that ran long enough that most
tracers diffused tens of times farther than the crowder
radii.

Simulated reactions used the formula A + B →
B, which simplified analysis by maintaining a con-
stant B concentration. A molecules did not interact
with other A molecules, or B molecules with other B
molecules, including through excluded volume inter-
actions, which simplified simulations and meant that
excluded volume arose only from crowders. Reactions
were interpreted using a model that I call the two-
radius Smoluchowski model, in which reactants nom-
inally interact when they are within a contact radius
of each other, σAB, but do not actually react until
they are at a smaller radius, σT, where they always
react. The reaction rate constant in this model is
4πσTD, which is smaller than the diffusion-limited
rate constant by a factor of σT/σAB, so the diffusion-
limited fraction value in this model is χ = σT/σAB.
This model is identical to the Collins and Kimball
model for all radii that are larger than the contact
radius. Because Smoldyn simulations use finite time
steps, it used a slightly larger reaction radius than σT

in order to produce the desired reaction rate constant,
as described in reference [26]. Steady-state rate con-
stants in the crowded systems were quantified by fit-
ting the number of A molecules in the system over
time with an exponential decay function for reactions
that were nearly activation-limited, or by fitting the
time-dependent numerical rate constant with a func-
tion with the form c1(1 + c2/

√
t) for reactions that

were nearly diffusion-limited, where c1 and c2 are fit-
ting parameters and t is the time [24]; this function
has the same form as the time-dependent Smolu-
chowski reaction rate constant [31]. In all cases, these
functions fit the data closely.
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