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Simulator

Steven S. Andrews

Abstract

Many biological molecules exist in multiple variants, such as proteins with different posttranslational
modifications, DNAs with different sequences, and phospholipids with different chain lengths. Represent-
ing these variants as distinct species, as most biochemical simulators do, leads to the problem that the
number of species, and chemical reactions that interconvert them, typically increase combinatorially with
the number of ways that the molecules can vary. This can be alleviated by “rule-based modeling methods,”
in which software generates the chemical reaction network from relatively simple “rules.” This chapter
presents a new approach to rule-based modeling. It is based on wildcards that match to species names, much
as wildcards can match to file names in computer operating systems. It is much simpler to use than the
formal rule-based modeling approaches developed previously but can lead to unintended consequences if
not used carefully. This chapter demonstrates rule-based modeling with wildcards through examples for
signaling systems, protein complexation, polymerization, nucleic acid sequence copying and mutation, the
“SMILES” chemical notation, and others. The method is implemented in Smoldyn, a spatial and stochastic
biochemical simulator, for both generate-first and on-the-fly expansion, meaning whether the reaction
network is generated before or during the simulation.

Key words Rule-based modeling, Particle-based simulation, Wildcards, Reaction networks, Spatial
simulation, Stochastic simulation, Brownian dynamics

1 Introduction

Since about the time that Boyle posited that matter was composed
of minute particles “associated into minute masses or clusters” [1],
now recognized as molecules, the dominant paradigm in
chemistry has been to classify molecules into chemical species.
This paradigm forms the foundation of chemical kinetics [2, 3]
and is supported by the finding that different molecules of the
same species are completely indistinguishable from each other
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[4, 5]. Correspondingly, most modern biochemical simulation
software represents molecules as members of species, treating all
members of a single species identically (see reviews [6, 7]). How-
ever, many biological molecules do not fit neatly into these classes.
For example, a cell might have a hundred or more DNA molecules,
each with a different sequence. Similarly, a cell might have
thousands of copies of some protein, but the copies vary according
to whether they are bound to other proteins, bound to cofactors, or
post-translationally modified with phosphate, methyl, or other
moieties.

Several approaches have been developed to represent this
molecular variation in computational models. One is to represent
every multimer as an explicit graph, including its component
monomers and their interconnections (e.g., [8–12]). Here, every
molecule is its own entity and the concept of a species as a class of
molecules is unnecessary. A second approach is to maintain the
species concept, but to include states in the molecule definitions.
For example, some biochemical simulators allow molecules to have
modification states [13–15], surface-binding states [16], or an
entire hierarchy of states [17]. A third approach is to define each
molecular variant as a separate species, with minimal variation
within species. The possible variations can lead to a combinatorial
expansion in the number of species [18], leading to the develop-
ment of so-called rule-based modeling methods for automating
reaction network expansion from “rules” that describe molecular
complexation and modifications (e.g., [19–21]).

The Smoldyn simulator represents molecular variation using
this last approach, offering two different types of rule-based mod-
eling [22]. Smoldyn is a widely used biochemical simulator that
represents molecules as individual particles in 1D, 2D, or 3D space;
these molecules diffuse, react with each other, and interact with
surfaces [16, 23–25]. In one type of rule-based modeling, Smoldyn
sends any rules in the user’s input file that are written in the
BioNetGen language (BNGL) to the BioNetGen software
[19, 26]. BioNetGen expands the rules to lists of species and
reactions. Then, Smoldyn reads the species and reactions; computes
diffusion coefficients, graphical display parameters, and surface
interactions for the new species; and runs the simulation
[22]. Smoldyn’s second type of rule-based modeling, which is the
focus of this chapter, is based upon wildcard characters. Here, the
modeler uses wildcard characters to specify groups of species to the
Smoldyn software in much the same way as wildcard characters can
be used to specify groups of files to the operating system. When
used in chemical reactions, these wildcards can be used to define
new species and new reactions.

Conventional rule-based modeling languages, including
BNGL and Kappa [26, 27], are formal languages that are designed
around an underlying model of how protein complexation and
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modification generally work. The wildcard approach is different: it
is simply a well-defined set of text-replacement tools with which
modelers can create their own models and notational schemes. This
offers substantial versatility and generally simplifies input files.
However, this expanded freedom can also produce incorrect reac-
tion networks if not used carefully. To address this, the main text of
this chapter describes how wildcards work and the subsequent
Notes section presents examples that illustrate how to use the
method effectively.

2 Materials

Download Smoldyn from http://www.smoldyn.org. Smoldyn is
free, open source, and licensed under the relatively permissive
LGPL. The download package comes with install scripts, a detailed
user’s manual, over 100 example input files, related software tools
(including BioNetGen), and, if desired, the source code. Install on
Macs and Windows with the install scripts, which is generally easy.
Install on Linux computers by compiling the source code with
CMake and Make, which is also straightforward. Smoldyn runs
on most laptops and larger computers that are less than 5 years
old, as well as many older computers. Support is available by
e-mailing support@smoldyn.org.

3 Methods

3.1 Running

Smoldyn

To simulate a model in Smoldyn, start by describing the model in
the Smoldyn language using a plain text file. Reference [28] and the
Smoldyn User’s Manual (included in the download package)
describe how to write input files and give suggestions for parameter
values.

Run Smoldyn at a shell prompt (a “Terminal” or “Command
Line” application) by typing smoldyn myfile.txt, where
myfile.txt is the configuration file name. Upon starting, Smol-
dyn reads model parameters from the configuration file, calculates
and displays simulation parameters, and runs the simulation. As the
simulation runs, Smoldyn displays the simulated system to a gra-
phics window and saves quantitative data to one or more output
files.

3.2 Wildcards for

Matching

Molecules in Smoldyn are classified into chemical species and can
also adopt any of five physical states. These states are in solution
(e.g., a cell’s cytoplasm) or the four surface-bound states called
“front,” “back,” “up,” and “down.” Originally, the former two
surface-bound states were for peripheral membrane proteins and
the latter two were for integral membrane proteins, although they
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are all essentially equivalent in practice. All molecules of a single
species and state behave identically, meaning that they have the
same diffusion coefficients, graphical display parameters, surface
interaction rates, and chemical reaction rates. Any other molecular
variation needs to be expressed using separate species. For example,
if a model includes the yeast Fus3 protein, which can bind to zero,
one, or two phosphate groups [29], then each of its phosphoryla-
tion states would need to be represented as a separate species.
Alternatively, if a model includes a receptor that diffuses at one
rate in normal membrane regions and more slowly in lipid rafts,
then this variation would again need to be represented using sepa-
rate species.

These groups of species can be easily represented using
wildcards. For example, if the three Fus3 species were named Fus3,
Fus3p, and Fus3pp, then the species pattern Fus3* would represent
all three species. Also, if the receptors mentioned above were
named R_normal and R_raft, then the species pattern R_* would
represent both species. More generally, a species pattern is defined
as a species name that may or may not include wildcard characters.
In both of these examples, the “*” wildcard is used to represent
variable portions of the species names.

Smoldyn supports text-matching and structural wildcards,
where the former ones match to specific portions of the species
names and the latter ones enable logical operations within species
patterns. The text-matching wildcards include “*”, which matches
to any zero or more characters, “?”, which matches to any one
character, and [...], which matches to any one character from a
specified list. The structural wildcard characters include “|”,
which is an OR operator, “&”, which is a permutation operator,
and {...}, which specifies the order of operation for the other two
structural wildcards (the normal order of operations is that “&”
takes precedence over “|”). The structural wildcards are most easily
explained through examples, this time using the generic protein
monomer names A, B, and C: the pattern A|B matches to either A
or B; the pattern A&B matches to either AB or BA; the pattern
A&B|C matches to AB, BA, or C; and the pattern A&{B|C}
matches to AB, BA, AC, or CA. See Table 1.

Internally, when Smoldyn parses the user’s input file and
expects a species name, it inputs the given text as a species pattern.
The pattern may be as simple as a single species name but could also
include one or more wildcard characters. If the pattern does not
include structural wildcards, then it is an elementary pattern. On
the other hand, if it does include structural wildcards, such as the
pattern A&*, then Smoldyn first expands it to a list of elementary
patterns; in this A&* example, Smoldyn would expand it to the
elementary patterns A* and *A. Next, Smoldyn scans through its
list of species names to see which ones can match the elementary
pattern(s). These matching species form a species group. If the
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pattern arose in a statement that defines species attributes (e.g.,
difc, for specifying the diffusion coefficient), then Smoldyn
assigns the same attribute value to all species within the species
group. Alternatively, if the pattern arose in a command that outputs
information about molecules (e.g., molcountspecies, which
counts the number of molecules of a given species or species
group), then Smoldyn combines the appropriate information for
all of the molecules that are in the species group.

3.3 Wildcards for

Substitutions

Smoldyn also supports wildcards in chemical reaction definitions,
where they can be used to specify multiple chemical reactions at
once. Smoldyn inputs each chemical reaction equation as a reaction
pattern, which again may include wildcards but does not have to.

First, consider elementary reaction patterns, meaning reaction
patterns that do not contain structural wildcards. In this case,
Smoldyn substitutes any text that the wildcards match for the
reactants into the corresponding wildcards in the products. For
example, the reaction Ste5 + Fus3* ! Ste5-Fus3* specifies that
any of the three Fus3 species described above (Fus3, Fus3p, and
Fus3pp) can associate with the Ste5 protein [29]. In this case, the
respective products would be Ste5-Fus3, Ste5-Fus3p, and Ste5-
Fus3pp. If the same text-matching wildcard is used multiple
times on each side of the equation, then Smoldyn corresponds
the first instance in the reactants to the first instance in the pro-
ducts, the second to the second, and so on. For example, if Ste5 can
also be phosphorylated, then Ste5* + Fus3* ! Ste5*-Fus3* spe-
cifies that the binding reaction occurs for all phosphorylation states
of both proteins, and that they maintain their phosphorylation
states during the reaction. The correspondence can also be given
explicitly using the “$n” wildcard on the product side of a reaction,
using any value of n from 1 to 9, where it represents the n’th item of
matching text. For example, the previous reaction could also be

Table 1
Smoldyn wildcards

Symbol Meaning Matching example Reaction example

? Any 1 character A? matches to AB, AC, etc. A? ! B?

* 0 or more characters A* matches to A, AB, etc. A* ! B*

[...] 1 listed character A[a-c] matches to Aa, Ab, Ac A[u,p] ! B[0,1]

| OR operator A|B|C matches to A, B, C A|B ! a|b

& Permutation A&B matches to AB, BA A&B ! a&b

{...} Grouping A{B|C} matches to AB, AC A{b|c} ! A{c|b}

$n n’th match Not applicable A?? ! B$2$1
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written as Ste5* + Fus3* ! Ste5$1-Fus3$2. Text-matching
wildcards in the reactants do not have to appear in the products;
for example, Fus3* ! X shows that all three Fus3 species decay to
the same product. On the other hand, text-matching wildcards in
the products must appear in the reactants, meaning that Smoldyn
would not accept the reaction X ! Fus3*.

Much like the case for species patterns, Smoldyn expands reac-
tion patterns that include structural wildcards to lists of elementary
reaction patterns and then performs matching and substitution on
these elementary patterns. In the reaction pattern A&* ! X*, for
example, Smoldyn would first expand it to the elementary reaction
patterns A* ! X* and *A ! X*; Smoldyn would then perform
matching and substitution on these two elementary reaction pat-
terns. There are a few possible types of expansions. (1) If the
reactant and product sides expand to the same number of elemen-
tary patterns, then Smoldyn assumes that they correspond to each
other sequentially. For example, Smoldyn expands the reaction
pattern A|B ! C|D to the two reactions A ! C and B ! D.
(2) Smoldyn accepts patterns that expand to only one elementary
pattern on either the reactant or the product side, in each case
creating a list of reactions that have either the same reactant or
product. For example, A|B! X expands to A! X and B! X. Also,
X ! A|B expands to X ! A and X ! B. However, (3) Smoldyn
does not accept patterns that expand to different numbers of ele-
mentary patterns on the reactant and product sides. For example,
Smoldyn rejects the reaction pattern A|B|C ! D|E.

In addition to the chemical reaction equation, Smoldyn allows
modelers to specify several other reaction parameters. These
include the reaction rate constant, how any dissociation products
should be arranged, whether molecule serial numbers should be
retained, and others. These parameters are entered in the same way
for single reactions, reactions defined using wildcards, and reactions
defined as rules, described next.

3.4 Reaction

Network Expansion

In most cases, Smoldyn acts on input file statements as it encoun-
ters them. For example, if Smoldyn encounters a difc statement in
an input file, it immediately sets the diffusion coefficient for all
species that match the given species pattern to the given value.
Likewise, if Smoldyn encounters a reaction statement, it imme-
diately creates reactions for all currently defined species that match
the given reaction pattern. In this case, Smoldyn issues either a
warning or an error if any product names arise that are not currently
defined species. Smoldyn does not revisit these statements during
the simulation.

On the other hand, if the input file statement is suffixed with
the text “_rule”, such as in difc_rule or reaction_rule, then
Smoldyn does not act on the statement immediately but instead
stores it for future use (after a little preliminary parsing). Smoldyn
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acts on these statements later on during rule expansion. Smoldyn
supports two approaches for rule expansion. First, if it encounters
an expand_rules statement in the input file (followed by “all” or
a number), it expands the rules at that point. In this so-called
generate-first approach [30], Smoldyn reads through the rules
sequentially and acts on them using the currently defined species.
In doing so, if it finds that a reaction specifies a product species that
has not been defined, then Smoldyn creates the species. Smoldyn
repeats this process for a user-specified number of iterations or until
it has fully expanded the reaction network. This generate-first
approach is often convenient for small reaction networks because
Smoldyn displays all species and reactions before the simulation
begins, making it easy to confirm that the network agrees with
expectations (see Notes 1–3). Second, the rules can be expanded
using the on-the-fly approach [30], in which Smoldyn acts on the
rules at every time step during the simulation, but only as required.
In particular, Smoldyn only generates the reactions for a species
once the first molecule of the species has actually arisen in the
simulation. This prevents the generation of unused species and
reactions, which can be a large fraction of the possible ones
[31]. This improves simulation efficiency for large reaction net-
works and can often enable simulations to run with reaction net-
works that would be infinitely large if they could be fully expanded
(see Notes 4–6).

3.5 Properties of

New Species

As mentioned above, the Smoldyn species properties include their
diffusion coefficients, graphical display parameters, and surface
interaction behaviors. These properties are typically assigned
using the difc, color, display_size, action, and rate state-
ments in the input file, where the last two define molecule-surface
interaction behaviors. However, if Smoldyn acts on these state-
ments before it performs reaction network expansion (which always
happens when using on-the-fly expansion), then they do not apply
to newly generated species. The rule statements described above,
such as difc_rule, are one way to address this problem. An
alternate and often better approach is that Smoldyn can assign
species properties automatically by computing reaction product
properties from the reactant properties.

It does so using the following assumptions: (1) reactants dif-
fuse as though they are roughly spherical, (2) reactant volumes add
upon binding, and (3) molecule diffusion coefficients scale as the
inverse of the molecule’s radius [22]. This last assumption follows
from the Stokes-Einstein equation, which appears to be reasonably
accurate even within cells [28, 32]. These assumptions lead to
the following equations for the product of the generic reaction
A + B ! AB:
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rAB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3A þ r3B

3

q

DAB ¼ D�3
A þD�3

B

� ��1=3

where rA and rB are the reactant radii, DA and DB are the reactant
diffusion coefficients, and rAB and DAB are the product radius and
diffusion coefficient. Smoldyn assigns the product’s graphical dis-
play radius from the rAB equation. Next, Smoldyn computes the
product’s display color using a radius-weighted average of the
reactant colors. For each of the red, green, and blue colors, it
computes the product brightness value using

vAB ¼ rAvA þ rBvB
rA þ rB

where vA and vB are the reactant brightness values and vAB is the
product brightness value. Finally, Smoldyn determines surface
interactions for products using the method that the new species
behaves like the reactant that has the “greater action,” where the
possible actions are ordered with increasing value as transmission,
reflection, absorption, and porting (which is for hybrid simulations
[33]). For example, if a surface reflects reactant A and transmits
reactant B, then reflection is the greater action, so the surface
reflects product AB.

3.6 Symmetric

Species

Reaction networks that include structurally symmetric species often
include multiple reactions that form the same products, which
increases the effective reaction rate. Consider the A-B-B-A complex
for example (seeNote 3). It can lose an A monomer from either the
left or the right sides, whereas the A-B-B complex can only lose an
A monomer from the left side, so the former reaction should
proceed twice as fast (assuming that all of these A-B bonds are
chemically identical). Smoldyn accounts for this by watching for
repeated reactions as it expands reaction patterns, and incrementing
the associated reaction multiplicitywhen they arise. Smoldyn multi-
plies the reaction multiplicity by the requested reaction rate con-
stant to compute the total reaction rate constant.

An exception arises to this multiplicity computation if the
reaction rule for a bimolecular reaction can match to both possible
orderings of a single pair of reactants. For example, the rule
* + * ! ** can match to the two reactants A and AA as either
A + AA or AA + A (seeNote 5). Because these two possible reaction
orderings typically reflect two different chemical bonds being
formed, Smoldyn only considers one of the two orderings (the
one in which the reactant’s internal indices are in increasing
order). These computations are designed to yield the results that
one would normally expect but are nevertheless complicated when
used with symmetric complexes, so it is worth checking that the
simulation parameters are as desired.
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4 Notes

The following notes illustrate the use of wildcards for rule-based
modeling using several example problems. These models, and addi-
tional files that I used for their analysis, are available in the Smoldyn
download package in the subdirectory examples/S94_archive/
Andrews_2019.Further information about themodels is also available
in this chapter’s Supplementary Materials (available at the publisher’s
website, the Smoldyn website, and the bioRxiv preprint server).

1. Simple reaction networks with low symmetry. Reaction networks
that are conceptually simple and have low symmetry are typi-
cally easy to define using wildcards. This is illustrated with an
example of second messenger signaling, where extracellular
“first messengers” bind to cell receptors, which then release
intracellular “second messengers” [34, 35]. Figure 1a shows a
simple model in which a transmembrane receptor (R) can bind
an extracellular ligand (L) and/or an intracellular messenger
protein (M); a messenger that is bound to a ligand-bound
receptor gets phosphorylated (Mp), and phosphorylated mes-
sengers lose their phosphates spontaneously (such as from
unmodeled phosphatases). The network, which comprises
nine species and ten reactions (Fig. 1b), can be expressed
with the following four rules using wildcards:

rxnlr L(fsoln) + R*(up) <-> LR*(up) krl_on krl_off

rxnrm *R(up) + M*(bsoln) <-> *RM*(up) krm_on krm_off

rxnphos LRM(up) -> LRMp(up) k_phos

rxnunphos Mp(soln) -> M(soln) k_unphos

L R 

Mp 

M 

LR 

RM LRM 

LRMp RMp 

ligand (L) 
k+LR 

k

messenger 
(M) 

k+RM k P 

kphos 

phosphorylated 
messenger (Mp) 

kdephos 

receptor (R) 

k

A B C 

Fig. 1 Model of second messenger signaling. (a) Cartoon of the model, showing the components and their
interactions. (b) The complete reaction network, where species are shown with the same colors as those
generated by Smoldyn. (c) Snapshot of this model simulated in Smoldyn, again using the same color scheme.
The line across the middle represents the membrane, the region above the line is the extracellular region, and
the region below the line is the cytoplasm
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Each line shows the rule name, the reaction rule, and the
reaction rate constants. Note that the use of wildcards, which
in this case is just the “*” character, enabled each rule to
represent a separate process in a clear manner. Also note that
the reactant and product states (the spatial localizations given
within parentheses) are straightforward to define and reason-
ably intuitive. Smoldyn uses them to correctly place all receptor
complexes at the membrane, ligands in the extracellular space,
and messengers in the cytosol (Fig. 1c).

2. More complicated networks with low symmetry. Figure 2a shows a
slightly more complicated example, but one that still includes
asymmetric complexes. It shows a model of transposon exci-
sion that was developed to answer the question of how DNA
transposons regulate their copy numbers so that they do not
overproduce themselves and then kill their hosts [36] (trans-
posons are mobile sections of DNA that can be amplified as
they move from one location in the genome to another). In the
model, the A-B species is a transposon with ends “A” and “B”,
and T2 is a transposase dimer, an enzyme that binds to and cuts
transposon ends. The transposase can be nonspecifically bound
to DNA (T2,nsb) or freely diffusing in the nucleus (T2). At low
transposase concentrations: a T2 binds to a transposon end to
form a singly bound transposon (T2A-B or A-BT2), this DNA
forms a loop, the same T2 binds to the other transposon end
(AT2B), and the transposase cuts out the transposon (the reac-
tion with rate k3). In the model, the transposition products
conserve the reactant amounts and create an X molecule as a
transposition counter although, in actuality, transpositions can
produce additional transposons, amplifying the transposon in
the genome. At high T2 concentrations: transposases bind to
singly bound transposons to create doubly bound transposons

A-B 

T2A-B 

A-BT2

T2A-BT2 AT2B A-B 

k1f
k1r

k2f

k3

k2r

T2 T2,nsb

k1f
k1r

k2f

k2r

k1r

k1r

k1f

k1r

k0f

k0r

T2
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A B 
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Fig. 2 Model of transposase dynamics modified from Ref. [36]. (a) Reaction network, where A-B is a
transposon and T2 is a transposase dimer. Colors are those generated by Smoldyn. (b) Transposition rate
for a single transposon as a function of the total transposase dimer concentration within the nucleus. Points
represent simulation data generated with ordinary differential equations and simulated in Mathematica and
the line represents the analytical theory for the transposition rate, described in the main text
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(T2A-BT2). These cannot undergo transposition, thereby reg-
ulating the process. This model can be expressed using
wildcards as

rxnT2nsb T2 <-> T2nsb k0f k0r

rxnABbind A-B*|*A-B + T2 <-> T2A-B*|*A-BT2 k1f k1r

rxnassemble T2&A-B <-> AT2B k2f k2r

rxnexcise AT2B -> A-B + T2 + X k3

The OR operators in rxnABbind indicate that T2 can bind to
either the left of A-B* (A-B or A-BT2) or the right of *A-B (A-
B or T2A-B). The permutation operator in rxnassemble
indicates that both T2A-B and A-BT2 react to form AT2B.

Expanding these reaction rules with Smoldyn produced the
reaction network shown in Fig. 2a, as anticipated. The physio-
logical rate constants [36] vary extremely widely (e.g.,
k0f¼ 105 s�1 and k2f¼ 4.3� 10�4 s�1), meaning that Smoldyn
would have to use short time steps to resolve the fast reactions
but also run for a very long time to observe the slow reactions,
so I simulated these reactions deterministically using Mathe-
matica instead. Figure 2b compares the simulated transposition
rates with steady-state values derived from analytical theory,
showing excellent agreement.

I derived the analytical result shown in Fig. 2b in several
steps while using the parameter values presented in Ref.
[36]. First, the equilibrium constant of reaction 0 showed
that most transposase is nonspecifically bound rather than
freely diffusing. Next, I found that the equilibrium concentra-
tions of the unbound, singly bound, and doubly bound trans-
posons are

A‐B½ �
A‐Bsum½ � ¼

1

1þ 2K T2,tot:

� �þK2 T2, tot:

� �2

T2A‐B½ �
A‐Bsum½ � ¼

A‐BT2½ �
A‐Bsum½ � ¼

K T2,tot:

� �

1þ 2K T2,tot:

� �þK2 T2, tot:

� �2

T2A‐BT2½ �
A‐Bsum½ � ¼ K 2 T2, tot:

� �2
1þ 2K T2,tot:

� �þK2 T2, tot:

� �2

where [A-Bsum] is the sum of these three transposon concen-
trations (which does not include AT2B) andK is the transposon
association constant, which are defined as

Using Wildcards in Smoldyn 189



A‐Bsum½ � ¼ A‐B½ � þ T2A‐B½ � þ A‐BT2½ � þ T2A‐BT2½ �

K ¼ k0rk1 f

k0r þ k0 f
� �

k1r
:

The reverse reaction rate constant k2r is much smaller than the
transposition rate constant, k3, allowing it to be ignored. As a
result, the steady-state transposition rate is

ϕ ¼ k2 f T2A‐B½ � þ k2 f A‐BT2½ �:
Substituting in for the singly bound transposon concentrations
and then addressing the fact that [A-Bsum] does not include the
concentration of AT2B lead to the final result:

ϕ ¼ 2k2 f K T2,tot:

� �
A‐Btot:½ �

1þ 2K T2,tot:

� �þK2 T2, tot:

� �2

� 2k2 f K T2,tot:

� �

2k2r þ k3ð Þ 1þ 2K T2,tot:

� �þK2 T2, tot:

� �2� �þ 1

2
4

3
5
�1

This is the steady-state transposition rate, shown in Fig. 2b
with a solid line. The former term represents the dominant
effect of transposon regulation, showing that transposition is
slow with low and high transposase concentrations but fast
with intermediate transposase concentrations. The latter term
in this equation is much less important and can be ignored if k3
> > k2f; however, it is included here because experimental
evidence suggests that k3 is actually only about three times
larger than k2f [36]. See the Supplementary Materials for
details.

3. Symmetric complexes, modeled with asymmetric notation. Reac-
tion networks that include structurally symmetric protein com-
plexes, such as dimers and higher oligomers [37], generally
require a little more care. In particular, it is often the case that
a single complex can be represented correctly in multiple ways,
leading to the question of whether the model notation should
just include one of the ways, or all of them. Which approach is
simplest depends on the specific problem; this note shows an
example of the former approach, in which each complex is
represented in just one way.

Figure 3a shows a simple model of reversible dimer assem-
bly for a symmetric complex that has the form A-B-B-A, a form
that is loosely based upon receptor tyrosine kinases such as the
epidermal growth factor and insulin receptors [38]. The model
includes the monomers A and B, dimers AB and BB, trimer
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ABB, and tetramer ABBA. The notation is asymmetric in that it
includes the species AB but not the species BA, which would be
chemically identical. Similarly, it includes ABB but not BBA. It
can be expressed with the reaction rules:

rxnABon A + B|BB|BB|ABB -> AB|ABB|ABB|ABBA AB_ON

rxnABoff AB|ABB|ABBA|ABBA -> A + B|BB|ABB|ABB AB_OFF

rxnBBon1 B + B|AB -> BB|ABB BB_ON

rxnBBon2 AB + AB -> ABBA BB_ON

rxnBBoff *BB* -> *B + *B BB_OFF

These rules make heavy use of the OR operator. For example,
the first reaction rule shows that A can bind to any of B, BB,
BB, or ABB, and the products are, respectively, AB, ABB, ABB,
and ABBA. The repeated BB reactants in this rule reflect the
fact that A can bind to either the left or the right side of BB so
the rate constant for this reaction should be twice the listed
value (AB_ON). Similarly, in the second reaction rule, ABBA
dissociates twice to A + ABB to reflect the two A-B bonds in
ABBA. These rules are somewhat inelegant in that they do not
reflect the symmetry of the system, include strings of OR
operators, and only include irreversible reactions despite the
fact that the model reactions are reversible. This inelegance
arises from the decision to use asymmetric notation and from
limitations in the wildcard approach. Nevertheless, these rules
are substantially simpler than the full list of 12 reactions.
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Fig. 3Model of symmetric complexation using asymmetric notation. (a) Reaction
network for binding between A and B components that can assemble into the
A-B-B-A complex. (b) Black lines show reaction kinetics computed from manual
reaction network expansion and simulated with ordinary differential equations
using Mathematica; colored points show reaction kinetics from Smoldyn’s
expansion of wildcard rules and then simulation. Colors in both panels are
those generated by Smoldyn. Simulation parameters: AB_ON ¼ 10,
AB_OFF ¼ 0.05, BB_ON ¼ 8, BB_OFF ¼ 0.03, 10,000 initial A molecules,
10,000 initial B molecules, volume of 1003, time from 0 to 20 with steps, in
Smoldyn simulation, of 0.05
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The reaction network that Smoldyn computed from these
rules was identical to ones that arose from BioNetGen and
manual expansion [22], validating the rule approach.
Figure 3b shows that a Smoldyn simulation that was defined
with these rules agreed well with a deterministic simulation of
the same network, computed using ordinary differential
equations.

4. Symmetric complexes, modeled with symmetric notation. This
note continues on the topic of symmetric complexes, but now
using symmetric notation. In this case, complexes that can be
represented correctly in multiple ways are not represented with
just one of the possibilities, but with all of them. This increases
network complexity due to the greater number of species and
reactions, but can simplify the reaction rules through preserva-
tion of the network symmetry.

E. coli bacteria have several mechanisms for locating their
cell division plane at the cell center, one of which is to prevent
division elsewhere with the Min system [39, 40]. In this sys-
tem, the combined actions of the MinD and MinE proteins
create a spatiotemporal oscillation between the cell poles that
keeps the co-localized MinC away from the cell center; MinC
inhibits division apparatus formation, thus inhibiting cell divi-
sion away from the cell center. This system has been modeled
extensively [41, 42] but few models explicitly represent MinD
or MinE dimerization [43], despite the fact that both have
dissociation constants that are comparable to their intracellular
concentrations [44, 45]. Interestingly, MinD only dimerizes
when bound to ATP [46] and MinD only hydrolyzes ATP
when it is dimeric [47].

Figure 4a shows a model of MinD nucleotide binding and
dimerization. All species are MinD proteins, but bound to
different cofactors: “T” represents MinD bound to ATP, “D”
represents MinD bound to ADP, and “A” represents MinD
bound to neither (“A” stands for apo). Pairs of these symbols,
such as “TT”, represent dimers. Three of the dimers are het-
erodimers that the model represents using both possible order-
ings, such as DT and TD. The model can be described with the
following rules, of which the first three represent nucleotide
substitution, and subsequent ones represent dimerization,
dimer dissociation, and ATP hydrolysis:

rxnAtoD *A* <-> *D* KATOD KDTOA

rxnAtoT *A* <-> *T* KATOT KTTOA

rxnDtoT *D* <-> *T* KDTOT KTTOD

rxndimer T + T -> TT KDIMER

rxndissoc ?? -> ? + ? KDISS

rxnhydro ?&T -> ?&D KHYDRO
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Maintaining the reaction network symmetry in the model
notation enabled simple and elegant reaction rules in this
case. Note the use of the “?” wildcard: rxndissoc uses it to
indicate that all dimers dissociate with the same rate constant
and rxnhydro uses it to represent any monomer within a
MinD dimer. Also, use of the permutation operator in the last
rule shows that any dimer with a “T” in it, regardless of
whether the “T” is the first or second symbol, is able to
perform hydrolysis.

Figure 4a illustrates on-the-fly network generation for this
model using background shading. It depicts the situation in
which the only species that have arisen in the simulation so far
are A, D, T, TT, and DT and/or TD. They are over a white
background to show that this region of the network has been
explored. Species and reactions in the adjacent light gray
regions have been generated by Smoldyn so that they could
be used, but they have not actually arisen in the simulation so
far. Species and reactions in the dark gray regions have not been
generated yet (and may not require generation), which saves
computation and computer memory.

Figure 4b shows the number of molecules of each species at
steady state, where the bars are from a deterministic simulation
in Mathematica and the points are average values from a Smol-
dyn simulation. It shows that most of the MinD is bound to
ATP and is either monomeric or dimeric. These results were
computed from physiologically reasonable parameters for a
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Fig. 4 Model of E. coli MinD dimerization and nucleotide binding. (a) Reaction
network. Background shading illustrates on-the-fly simulation for a simulation in
which A, D, T, TT, and either DT or TD have arisen. White regions are explored,
light gray are generated but not explored, and dark gray are not generated; see
the main text. (b) Species abundance in a single cell at steady state using
physiologically reasonable parameter estimates. Bars are deterministic values
computed by simulating the network in Mathematica using ordinary differential
equations and points are averages of Smoldyn simulation values (n ¼ 20)
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single cell but do not account for membrane or MinE
interactions.

The parameters are described in the Supplementary Mate-
rials and summarized here. The cell volume was set to 1 fl, from
Refs. [48, 49], cells contained 2000MinD protein copies [50],
and the ATP concentration was 1.54 mM, which came out to
930,000 molecules [48, 51]. The ADP concentration was set
eightfold lower than the ATP concentration [48, 52], leading
to 0.68 mM ADP, which was 116,000 molecules. From the
29.6 kDa molecular weight of MinD [53], I estimated its
diffusion coefficient as 2.6 μm2/s [28], in good agreement
with the value used in a prior model [54]. Nucleotide exchange
was shown to occur for MinD [55], for which I assumed that
exchange of ADP with ATP had a rate constant of 1 s�1, from
the same model [54]. Combining this with the ATP concen-
tration yielded KDTOT as 650 M�1 s�1, which is
1.1 � 10�6 μm3 s�1. ATP competes three times more effec-
tively than ADP for binding toMinD [56], so I set KTTOD to be
1/3 of KDTOT, making it 0.37 � 10�6 μm3 s�1. I assumed the
same values for nucleotide gain, so KATOT was
1.1 � 10�6 μm3 s�1 and KATOD was 0.37 � 10�6 μm3 s�1. I
also assumed that 20 times more MinD is bound to ATP than
unbound, which combined with prior numbers to give both
KTTOA and KDTOA as 0.05 s�1. MinD is predominantly dimeric
when over 2 μM and monomeric at lower concentrations [45],
so I assumed a 2 μM dissociation constant. Further assuming a
dissociation reaction rate constant (KDISS) of 1 s�1 led to the
dimerization rate constant (KDIMER) of 5 � 105 M�1 s�1,
which is 8.5 � 10�4 μm3 s�1. Finally, MinD hydrolyzes ATP
with a maximum rate of 2.5 nmoles of ATP per mg of protein
per minute [57] which converts to a KHYDRO value of
1.2 � 10�3 s�1.

5. Polymerization with identical monomers. Cellular polymers
include (1) microtubules and actin, which are important for
cell structure and intracellular transport; (2) intermediate fila-
ments, which provide mechanical strength; (3) DNA and RNA,
which encode genetic information; (4) polysaccharides, which
provide structure and store energy; and sometimes (5) amyloid
fibrils, which can cause neurodegenerative diseases
[58–60]. Most of these polymers assemble at one or both
ends, although some can also anneal, meaning that two poly-
mers join end to end.

Figure 5a shows a polymer model that assembles and dis-
assembles at one end (the model is called “polymer_end1”). It
can be expressed with the reaction rule

rxnend * + A <-> *A KF KR
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where “A” is a single polymer unit and KF and KR are the
forward and reverse reaction rate constants. The isolated aster-
isk is adequate in this rule because this model does not include
other species, but would create unintended reactions other-
wise. A simulation that started with 20,000 monomers and
used on-the-fly expansion resulted in an exponential polymer
length distribution at equilibrium, shown with red dots in
Fig. 5c. This agreed with theory [61] (black lines in Fig. 5c)
which is described in the Supplementary Materials and sum-
marized below. On completion, this model had 40 species and
77 reactions.

Some limitations of the wildcard method were interesting.
(1) This simulation represented polymer lengths by listing their
units rather than with numbers (e.g., “AAA” rather than
“A3”), so polymers were limited to 256 units because that is
the longest species name that Smoldyn allows. (2) Smoldyn
represents these polymers as spheres rather than as extended
filaments; this is clearly inaccurate for stiff polymers, although
actually reasonably accurate for highly flexible polymers which
tend to collapse into loose clusters [61]. In the latter case,
Smoldyn computed polymer radii as increasing as L1/3, where
L is the polymer length due to its default method for comput-
ing properties for new species (Subheading 3.5, above),
whereas the ideal scaling for freely jointed chains is L1/2

[60, 62]. And (3) Smoldyn computed the polymer diffusion
coefficients as decreasing as L�1/3, as compared to the L�0.6

scaling that is typically observed experimentally for
polymers [60].
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Fig. 5 Models of polymerization. (a) Reaction network for polymers that can add or lose units from a single
end. (b) Part of a reaction network for polymers that can add or lose units from their ends, and can also break
and anneal. (c) Equilibrium length distributions of polymers from a simulation of the end-polymerization model
(“polymer_end1” model, red points), a simulation of the breaking and annealing model (“polymer_mid”
model, blue points), and analytical theory (solid black line). Dashed lines show the theoretical standard
deviations
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Amore serious flaw with this model is that Smoldyn assigns
the same reaction rate to all association reactions. This is the
correct behavior for the given reaction rule, but does not
account for the fact that the A + A ! AA reaction can happen
in either of the two ways: either of the two reactant monomers
can end up at the “left” end of the product. The following
reaction rules (model “polymer_end2”) fix this flaw:

rxn1 A + A <-> AA 2*KF KR

rxn2 *AA + A <-> *AAA KF KR

Here, monomer association proceeds twice as fast as association
of higher polymers. Results from these latter rules agreed with
a comparable model written in BNGL [22]. At equilibrium,
they also showed an exponential length distribution for all
polymers with more than one monomer (see Supplementary
Materials).

Figure 5b shows a model in which polymers can also anneal
and break (model “polymer_mid”). It can be expressed with
the reaction rule

rxnmid * + * <-> ** 2*KF KR

As above, the association reaction rate was doubled to account
for the fact that either of the two reactants can end up on the
“left” side of the product. This follows from the fact that
Smoldyn only considers a single ordering for any particular
pair of reactants; for example, it generates the reaction
A + AA ! AAA but not also AA + A ! AAA. This model
reached equilibrium much faster than the former ones but
produced essentially the same exponential length distribution
as the “polymer_end1” model (blue dots in Fig. 5c). This
model led to a much larger reaction network, with 151 species
and 4037 reactions, because each species can participate in
many more reactions.

To derive the theoretical length distribution for the poly-
mer_end1 model, define Ka as the association constant:

Ka ¼ k f

kr
:

It is the equilibrium constant for each of the association reac-
tions, so

Ka ¼ A2½ �
A½ � A½ � ¼

A3½ �
A2½ � A½ � ¼ � � � ¼ An½ �

An�1½ � A½ �
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where An represents an n-mer. Rearrangement leads to

An½ � ¼ Kn�1
a A½ �n

for all n equal to 2 or larger. This equation shows the exponen-
tial length distribution at equilibrium, in which long polymers
are less abundant than short polymers. To solve for the mono-
mer concentration in this equation, we use the fact that the
simulations conserved the total subunit concentration:

Atot:½ � ¼ A½ � þ 2 A2½ � þ � � � þ n An½ � þ � � �:
Substituting in the above solution for [An], summing the
infinite series, and then solving for [A] yield the monomer
concentration

A½ � ¼ Atot:½ �1þ 2Ka Atot:½ � � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Ka Atot:½ �p

2K2
a Atot:½ �2 :

Finally, these are equilibrium concentrations, so the standard
deviations of the populations can be well approximated as the
square roots of the mean populations. Derivations for the
theoretical length distributions for the polymer_end2 and
polymer_mid models are similar and described in the Supple-
mentary Materials.

6. Polymer sequences and chemical structures. The pattern-
matching aspects of the wildcard method enable it to be used
to define reactions that are specific to individual polymer
sequences and chemical structures.

The central dogma of molecular biology is that cells tran-
scribe DNA to mRNA and then translate mRNA to protein
[58]. Figure 6a shows that this process can be modeled using
wildcards if sequences are reasonably short. The reaction rule

rxnTransc Dna* -> Dna$1 + Rna$1 KTRANSC

performs transcription, where “Dna” and “Rna” are prefixes
that indicate the sequence type and the “$1” portions of the
products show that the same text gets substituted into each
one. Ideally, this rule would not only preserve the sequence,
which it does, but also replace all T symbols, for DNA thymine
bases, with U symbols, for RNA uracil bases. However, there is
no easy way to do this with the wildcard method as it is
currently designed. A wildcard approach that used regular
expressions, which are more sophisticated pattern-matching
approaches, would solve this problem but would also be more
difficult to use. The following reaction rules perform transla-
tion by modeling ribosome (“Rib”) binding to the beginning
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of an mRNA sequence, translation of each codon, and finally
dissociation of RNA, ribosome, and protein (“Prot” prefix):

rxnRibBind Rna*[A,T,C,G] + Rib -> RnaRib*[A,T,C,G]Prot KTRANSL

rxnTranslI Rna*RibAT[T,C,A]* -> Rna*AT[T,C,A]Rib*i KTRANSL

rxnTranslN Rna*RibAA[T,C]* -> Rna*AA[T,C]Rib*n KTRANSL

. . . 17 more amino acids . . .

rxnRibUnbind Rna*RibProt* -> Rna* + Rib + Prot* KTRANSL

In rxnTranslI reaction rule, for example, any of the RNA
codons ATT, ATC, and ATA (using T instead of U) code for
isoleucine, so the product shows that the ribosome moves
forward by three base pairs and an “i”, for isoleucine, is
appended to the growing protein. Three final reaction rules
encode for DNAmutations and RNA and protein degradation,
respectively:

rxnMut Dna*?* -> Dna*{A|T|C|G}* KMUT

rxnRnaDeg Rna*[A,T,C,G] -> 0 KRNADEG

rxnProtDeg Prot* -> 0 KPROTDEG

Figure 6b shows results from a simulation of this model that
started with one DNA molecule, DnaATCAATATT. Initially, it
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colors as panel A
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was transcribed to RnaATCAATATT and then translated over
multiple steps to Protini (isoleucine-asparagine-isoleucine).
At simulation time of about 1.9 h, the DNA mutated, leading
to a slightly different RNA sequence and production of protein
iyi. The protein molecule counts show a large variation because
they amplify the RNA counts, which have high variation due to
their low copy numbers [63].

Wildcards can also be used to define reactions based on
chemical structures that are not sequence data. In particular,
they are useful in conjunction with the SMILES notation [64],
a scheme that allows most chemical complexes to be uniquely
expressed using a single line of normal text characters (e.g.,
ethanol, CH3CH2OH is CCO in SMILES notation). As an
example, the E. coli lipid synthesis pathway includes several
enzymes that act repeatedly on lipids, adding a two-carbon
group with each repetition [65]. Each enzyme is specific to a
particular chemical functional group but has low specificity
with regard to the lipid chain length. This can be represented
using wildcards starting with the ten-carbon lipid cis-3-dece-
noyl-ACP, written in SMILES notation as [ACP]C(¼O)C/
C¼C\CCCCCC. Here, ACP is an abbreviation for acyl carrier
protein, the C(¼O) portion represents a carbonyl group, the /
C¼C\ portion represents a cis-conformation double bond, and
the CCCCCC portion represents a saturated hydrocarbon tail.
The reaction rules are

FabB + ACP-C(=O)C{CC|/C=C\}* -> FabB + ACP-C(=O)CC(=O)C{CC|/C=C\}*

FabG + ACP-C(=O)CC(=O)C* -> FabG + ACP-C(=O)CC(O)C*

FabZ + ACP-C(=O)CC(O)C* -> FabZ + ACP-C(=O)C/C=C/*

FabI + ACP-C(=O)C/C=C/* -> FabI + ACP-C(=O)CCC*

In the first reaction, FabB adds a carbonyl and extra carbon,
C(¼O)C, to the chain. Next, FabG reduces the newly added
carbonyl to a hydroxyl, C(O); FabZ reduces the hydroxyl to a
trans-conformation carbon-carbon double bond, /C¼C/; and
then FabI reduces the double bond to a single bond, CC. The
end result is that the cis-3-decenoyl-ACP gets lengthened by
two carbons to cis-3-dodecenoyl-ACP. Application of these
rules to this longer lipid adds yet more carbons.

Both the nucleic acid sequence model and this lipid syn-
thesis model would undoubtedly be simpler and more general-
izable if they were developed using software designed
specifically for the tasks. However, the fact that they can be
developed using wildcards shows the method’s versatility.
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