
Systems biology

Smoldyn: particle-based simulation with

rule-based modeling, improved molecular

interaction and a library interface

Steven S. Andrews1,2

1Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA and 2Isaac Newton

Institute for Mathematical Sciences, Cambridge CB3 0EH, UK

Associate Editor: Jonathan Wren

Received on May 16, 2016; revised on October 18, 2016; editorial decision on October 19, 2016; accepted on November 3, 2016

Abstract

Motivation: Smoldyn is a spatial and stochastic biochemical simulator. It treats each molecule of

interest as an individual particle in continuous space, simulating molecular diffusion, molecule-

membrane interactions and chemical reactions, all with good accuracy. This article presents sev-

eral new features.

Results: Smoldyn now supports two types of rule-based modeling. These are a wildcard method,

which is very convenient, and the BioNetGen package with extensions for spatial simulation, which

is better for complicated models. Smoldyn also includes new algorithms for simulating the diffu-

sion of surface-bound molecules and molecules with excluded volume. Both are exact in the limit

of short time steps and reasonably good with longer steps. In addition, Smoldyn supports single-

molecule tracking simulations. Finally, the Smoldyn source code can be accessed through a

C/Cþþ language library interface.

Availability and Implementation: Smoldyn software, documentation, code, and examples are at

http://www.smoldyn.org.

Contact: steven.s.andrews@gmail.com

1 Introduction

Biological cells exhibit dynamic spatial organization, at least some

of which is essential for cell survival. The precisely choreographed

steps of cell division and the elaborate architectures of individual

kinetichores are examples. The intricacy of this organization makes

it difficult to study experimentally, despite recent advances in cell

imaging, making computer modeling an important research compo-

nent. Such modeling requires the right software tools, which in this

case are programs that can accurately simulate spatial organization

within cells.

Several classes of simulators have been developed for this pur-

pose (see reviews Andrews et al., 2009; ElKalaawy and Amr, 2015;

Schöneberg et al., 2014; Takahashi et al., 2005). Deterministic

simulators return the same results every time they are run, typically

ignoring biological stochasticity. For example, the Virtual Cell soft-

ware was initially written to numerically integrate the deterministic

partial differential equations that describe reaction-diffusion proc-

esses (Schaff et al., 1997). Stochastic simulators, in contrast, account

for biological stochasticity using pseudo-random number generators

to compute results that differ each time but that sample from the

statistical distribution of results for the given model. Within this lat-

ter class, (i) mesoscopic lattice-based simulators, such as MesoRD

(Hattne et al., 2005) and URDME (Drawert et al., 2012), represent

space using lattices and treat molecules of interest (hereafter just

molecules) as well-mixed populations within the lattice sites. They

typically advance the simulation time by moving from event to event

using adaptations of Gillespie’s algorithms (Gillespie, 1977;

Stundzia and Lumsden, 1996). They are typically most useful for

models with many identical molecules (>105) and coarse spatial

resolution (>10 nm). (ii) Microscopic lattice-based simulators, such

as Spatiocyte (Arjunan and Tomita, 2010), also represent space

using lattices but only allow up to one molecule per site. They offer

VC The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 710

Bioinformatics, 33(5), 2017, 710–717

doi: 10.1093/bioinformatics/btw700

Advance Access Publication Date: 6 December 2016

Original Paper

http://www.smoldyn.org
Deleted Text: Takahashi <italic>et<?A3B2 show $146#?>al.</italic>, 2005
Deleted Text: Andrews <italic>et<?A3B2 show $146#?>al.</italic>, 2009;
Deleted Text: ; <xref ref-type=
Deleted Text: &hx2019;
Deleted Text: &hx003E;
Deleted Text: &hx2009;
http://www.oxfordjournals.org/

finer spatial resolution, making them particularly good for modeling

macromolecular crowding (e.g. Saxton, 1987) and protein aggrega-

tion (e.g. Goldman et al., 2004), but run more slowly and are prone

to artifacts from the lattice (e.g. Andrews et al., 2015). And (iii) par-

ticle-based simulators, such as MCell (Stiles and Bartol, 2001),

ReaDDy (Schöneberg and Noé, 2013) and Smoldyn (Andrews et al.,

2010), represent space continuously, treat molecules as individual

particles, and typically advance the simulation time with fixed steps.

Their spatial resolution can be as small as the sizes of single

molecules.

MCell and Smoldyn work at a similar level of detail, treating

molecules as spheres and ignoring intermolecular forces. MCell’s

strengths include its graphical user interface, elegant graphical out-

put and facility with complicated membrane geometries (e.g. Bartol

et al., 2015). It has found substantial use in the neuroscience com-

munity (e.g. Kinney et al., 2013; Stiles et al., 1996). Smoldyn’s

strengths include its high accuracy (Andrews, 2009; Andrews and

Bray, 2004), fast computation, and ease of use (Andrews et al.,

2010; Andrews, 2012). Smoldyn has been used most often for mod-

eling cell systems (e.g. Jilkine et al., 2011; Khan et al., 2012;

Subburaj et al., 2015) and biophysical problems (e.g. Schmidt et al.,

2014; Strongin et al., 2014; Zavala and Marquez-Lago, 2014).

In Smoldyn’s underlying reaction model, molecules diffuse with

ideal Brownian motion and react upon collision. Its algorithms also

follow this design, but the resulting dynamics are slightly different

due to its use of finite time steps (Andrews and Bray, 2004). The

Green’s function reaction dynamics (GFRD) (Takahashi et al.,

2010; van Zon and Ten Wolde, 2005) and free-propagator

reweighting (FPR) methods (Johnson and Hummer, 2014) avoid

these differences, making them slightly more accurate (within the

approximation that molecules are perfect spheres). However, they

often run slowly; GFRD ran several orders of magnitude slower

than Smoldyn in one comparison (Andrews et al., 2015) and the de-

scription of the FPR method (Johnson and Hummer, 2014) shows

that it uses shorter time steps and performs more computations per

step than Smoldyn does.

I initially released Smoldyn in 2003 and have continued to de-

velop it since then. This article describes recent additions to the soft-

ware, including support for rule-based modeling, molecules with

excluded volume, accurate on-surface diffusion, single-particle

tracking and an application programming interface (API). Each is a

small part of the whole program but nevertheless significant in its

own right. Together with the core software (Andrews et al., 2010)

and other additions (Robinson et al., 2015), these create a powerful

cell biology modeling tool. The features described here are illus-

trated using example files in the S94_archive/Andrews_2016/direc-

tory of the Smoldyn download package.

2 Results and discussion

2.1 Species groups and wildcards
One aspect of subcellular organization concerns the structures of

protein complexes, such as the kinetochores mentioned earlier.

More generally, many proteins have variable post-translational

modifications, such as phosphate groups, nucleotide cofactors and

conformational states, and/or form transient multimeric complexes

(Mayer et al., 2009).

Most simulators represent these modifications and complexes

with narrowly defined species, in which each variant is treated as a

separate species. This is conceptually simple, but the number of spe-

cies increases combinatorially with the possible modifications and

complexations, so it can be impractical to enumerate them by hand.

To alleviate this, rule-based modeling methods automatically gener-

ate the possible species and reactions from simple reaction rules (see

Stefan et al., 2014). The BioNetGen software (Blinov et al., 2004),

Moleculizer software (Lok and Brent, 2005), and j-calculus (Danos

and Laneve, 2004) represent three approaches. However, if the

entire reaction network is generated before the simulation, in the

generate-first approach, then it can still become too large; e.g. poly-

merization reactions lead to an infinite number of species (Chylek

et al., 2014; Blinov et al., 2005). This problem is alleviated by the

on-the-fly approach, in which the reactions for a species are only

generated when a molecule of that species has arisen in the

simulation.

Modifications and complexes can also be represented with

broadly defined species, in which each molecule carries binding in-

formation with it, often including a graph its subunits and each of

their modifications. In the limit, even the concept of a species, mean-

ing a class of molecules that all behave identically, becomes unneces-

sary (e.g. Bray and Lay, 1997; Sneddon et al., 2011). Spatial

simulators often use approaches in between these extremes (see

Gruenert et al., 2010; Tolle and Le Novère, 2010). For example,

MCell supports ‘slots’ for molecules, with which users can create

modifications or enable complexation (Stefan et al., 2014).

Smoldyn supported rule-based modeling using the

Libmoleculizer module (Andrews et al., 2010) but this did not work

satisfactorily. Thus, I replaced it with new methods, described here.

I kept Smoldyn’s species narrowly defined: molecules of a species

can only differ in their surface-binding state, meaning whether the

molecule is in solution, is bound to the front or back of a surface, or

spans the surface in an ‘up’ or ‘down’ orientation. I also kept mol-

ecules as always being spherical.

Smoldyn now supports species groups, which are user-definable

sets of species. For example, a modeler can define a species group

for a specific protein with individual species within the group repre-

senting the possible modification states. The modeler can then define

diffusion coefficients or graphical display parameters for an entire

family of species at once while also making exceptions as needed.

These species groups are most easily defined using wildcards in

species names, much as computer users use wildcards to specify

groups of files. For example, suppose a model includes proteins

Fus3, Fus3p and Fus3pp, where each ‘p’ represents a phosphate.

Using the ‘*’ wildcard, which matches to any 0 or more characters,

Fus3* denotes the group of all three species. Table 1 lists the wild-

cards that Smoldyn supports. They include the standard ‘*’, ‘?’ and

‘[. . .]’ operating system wildcards, the less common ‘j’, which is an

OR operator, and ‘&’, which is a new permutation operator.

Smoldyn also supports wildcards in chemical reactions, using the

method that wildcards in reaction products get substituted with the

matching text in the reactants. For example, suppose a model in-

cludes the protein Ste5, which can bind to Fus3 in any phosphoryl-

ation state. Binding between them could then be defined with the

reaction rule Ste5þFus3* ! Ste5Fus3*. These reaction rules can

produce new species names. If this happens, and if the user permits

it, Smoldyn includes the new species in the model. These new species

can then be reactants in the reaction rules, leading to further net-

work expansion, making this is a form of rule-based modeling.

Smoldyn supports it with both the generate-first and on-the-fly

methods (Andrews, 2016).

Smoldyn defines the diffusion coefficients, surface interaction

rates, and graphical display parameters for generated species from

those of the reactants. These definitions are based on the assump-

tions that the reactants diffuse as though they are roughly spherical

Particle-based simulation 711

Deleted Text: ,
Deleted Text: &hx2019;
Deleted Text: ,
Deleted Text: ; Kinney <italic>et<?A3B2 show $146#?>al.</italic>, 2013
Deleted Text: &hx2019;
Deleted Text: ; <xref ref-type=
Deleted Text: <xref ref-type=
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: <xref ref-type=
Deleted Text: ,
Deleted Text: above
Deleted Text: ,
Deleted Text: for example
Deleted Text: ,
Deleted Text: ; Gruenert <italic>et<?A3B2 show $146#?>al.</italic>, 2010
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx2019;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: ,
Deleted Text: &hx2018;
Deleted Text: &hx2019;
Deleted Text: &hx2018;
Deleted Text: &hx2019;
Deleted Text: &hx2018;
Deleted Text: &hx2019;
Deleted Text: &hx2018;
Deleted Text: &hx2019;
Deleted Text: ,
Deleted Text: &hx2018;
Deleted Text: &hx2019;
Deleted Text: &hx2018;&hx2014;
Deleted Text: &hx2019;
Deleted Text: &hx2018;
Deleted Text: &hx2019;

and their volumes add upon binding, so the effective radius of a mol-

ecule scales as the cube root of its volume. Thus, for the generic re-

action AþB! AB, the product radius is

rAB ¼ ðr3
A þ r3

BÞ
1=3 (1)

where rA and rB are the reactant radii. Smoldyn computes the prod-

uct’s graphical display radius from this equation. Using the further

assumption that diffusion coefficients scale as the inverse of a mol-

ecule’s radius, from the Stokes-Einstein equation, which is reason-

ably accurate even within cells (Andrews, 2012; Dix and Verkman,

2008), Smoldyn computes product diffusion coefficients as

DAB ¼ ðD�3
A þD�3

B Þ
�1=3 (2)

where DA and DB are the reactant diffusion coefficients (see Tolle

and Le Novère, 2010). Smoldyn computes the product’s display

color using a weighted average of the reactant colors. For each of

the red, green and blue brightness values, Smoldyn computes the

product brightness using

vAB ¼
rAvA þ rBvB

rA þ rB
(3)

where vA and vB are the reactant brightness values. Finally, Smoldyn

determines surface interactions for products using the method that

the new species behaves like the reactant that has the ‘greater ac-

tion’, where the possible actions are ordered with increasing value

as: transmission, reflection, absorption and porting (which is for hy-

brid simulations). For example, if a surface reflects reactant A and

transmits reactant B, then reflection is the greater action, so the sur-

face reflects product AB. All of these definitions can be overridden

by the user.

Smoldyn performs on-the-fly simulation by tagging species when a

molecule of that species first arises in the simulation. At the end of

each time step, Smoldyn inserts the names of these tagged species in the

reaction rules to generate the corresponding reactions and products.

If Smoldyn encounters multiple reactions that form the same

products, which often happens with symmetric species, Smoldyn

adds the reaction rates. For example, consider a model for a polymer

of ‘A’ subunits, where species A is a monomer, AA is a dimer, AAA

is a trimer etc. If the reaction rule for this model is ‘*þ* $ **’,

where the forward reaction indicates that any two polymers can as-

sociate and the reverse reaction indicates that a polymer can break

at any position (this needs to be simulated on-the-fly because the re-

action network is infinite), then dissociation of AAA can produce

the A and AA products in either of two ways, which are for dissoci-

ation of the left-most and right-most subunits. In this case, Smoldyn

adds the two elementary reaction rates to create the simulated reac-

tion rate.

I validated Smoldyn’s wildcard rule-based modeling using sev-

eral models, in each case expanding them manually, using

BioNetGen (see below), and with wildcards. The model shown in

Figure 1 tested the generated species properties, reactant and prod-

uct states, and simple reaction generation. A model in which A and

B species can bind together to form the A-B-B-A complex tested the

method’s accuracy with symmetric complexes. Finally, two polymer

growth and disassembly models validated Smoldyn’s on-the-fly net-

work generation and its performance with large reaction networks.

In all cases, the different network expansion methods produced the

same results. See Andrews (2016) for details.

2.2 Rule-based modeling in Smoldyn with BioNetGen
Rule-based modeling using wildcards is convenient but its depend-

ence on informal notation can lead to unintentional results in com-

plicated models. I addressed this by integrating Smoldyn with

BioNetGen, which reads the formal BNGL language (Blinov et al.,

2004; Chylek et al., 2014). In a process that is relatively seamless to

the user, Smoldyn passes BNGL rules to BioNetGen, BioNetGen

Table 1. Smoldyn wildcards

Symbol Meaning Matching example Reaction example

? any 1 character A? matches AB, AC, etc. A?! B?

* 0 or more characters A* matches A, AB, etc. A*! B*

[. . .] 1 listed character A[a-c] matches Aa, Ab, Ac A[u,p]! B[0,1]

j OR operator AjBjC matches A, B, C AjB! ajb
& permutation A&B matches AB, BA A&B! a&b

{. . .} grouping A{BjC} matches AB, AC A{bjc}! A{cjb}

A

C

D

B

Fig. 1. Model of second messenger signaling. (A) Model cartoon, showing

that membrane-bound receptors, R, can bind ligands, L and/or messenger

proteins, M; the latter get phosphorylated when both are bound and dephos-

phorylate spontaneously. (B) The complete reaction network, comprising 9

species and 18 reactions. (C) Rules for model generation using wildcards.

Surface-bound molecules have ‘up’ states, while reactants or products on the

front or back side of a membrane have ‘fsoln’ or ‘bsoln’ indicators, respect-

ively. (D) Reaction rules for model generation using BioNetGen; other rules

are not shown (Color version of this figure is available at Bioinformatics

online.)

712 S.S.Andrews

Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: <xref ref-type=
Deleted Text: &hx2019;
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: ,
Deleted Text: &hx2018;
Deleted Text: &hx2019;
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: S

generates and saves the reaction network, and Smoldyn reads the re-

action network (see Fig. 1D).

Smoldyn defines the properties of these generated species, and

also the reactant and product states in reactions, by first extracting

the monomer composition of the complexes from the species names

that BioNetGen generates. From these monomer compositions,

Smoldyn creates simplified species names. Then, Smoldyn computes

the display size, diffusion coefficient, and color for a species using

the following equations, which are essentially the same as equations

(1–3):

rcomplex ¼
X

i
r3
i

� �1=3
(4)

Dcomplex ¼
X

i
D�3

i

� ��1=3
(5)

vcomplex ¼
P

iriviP
iri

(6)

The i subscripts index the monomers that compose the complex.

Smoldyn defines surface interaction rates using the same ‘greatest

action’ approach as before, now using the surface interactions of all

component monomers. Finally, Smoldyn assigns states to reactants

and products based upon any ‘monomer states’ that the user

entered, in each case choosing the highest priority monomer state of

the component monomers, where surface-bound states have higher

priority than solution states. In the model shown in Figure 1, for

example, ligand and receptor monomer states are ‘solution’ and

‘up’, respectively (assigned in a portion of the input file that is not

shown), so Smoldyn chooses the higher priority ‘up’ state for the

ligand-receptor complex. I validated Smoldyn’s BioNetGen rule-

based modeling with the same models as for wildcards, described

earlier.

These approaches to rule-based modeling are complimentary,

with wildcards being better for simple models and BioNetGen for

complicated models. They can also be used together, such as by gen-

erating a reaction network in BioNetGen, which is less vulnerable to

mistakes, and then directing model observation using wildcards,

which are more convenient.

Keeping species narrowly defined in both approaches simplified

software design, cleanly separating the tasks that address reaction

network expansion with those that perform the simulation. It also

means that the core simulation algorithms work with simpler mol-

ecule data structures, which reduces their workload and speeds up

simulations. Finally, provided that there are many more molecules

than species, this approach reduces computer memory use because

less information gets stored with each molecule. This enables the use

of faster memory types, again speeding up simulations (e.g. Andrews

et al., 2010).

2.3 Diffusion of surface-bound molecules
Smoldyn has been simulating the diffusion of a surface-bound mol-

ecule over a single time step with the single projection method. In it,

Smoldyn computes a 3D Gaussian displacement for the molecule

with root mean square (rms) step length s ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2DDt
p

, where D is the

diffusion coefficient and Dt is the time step, and projects the dis-

placed molecule to the surface along the surface normal vector at

the new molecule position (Andrews et al., 2010). This is exact for

planar surfaces due to the independence of diffusion on each axis.

However, Smoldyn surfaces can also include regions that are not

planar, but spherical or cylindrical, so I investigated the quality of

this algorithm for these shapes. More specifically, users define

surfaces in Smoldyn by constructing them from ‘panels’, each of

which can be a rectangle, triangle, sphere, cylinder, hemisphere or

disk, so these tests investigated diffusion accuracy on each panel

shape. I also investigated the accuracy of transitions between panels,

described below.

I compared the single projection method with the double projec-

tion method, in which the molecule is projected into the plane tan-

gent to the panel at the molecule’s starting point, creating a 2D

diffusive step, and then projected to the panel using the local surface

normal (e.g. Hołyst et al., 1999) (Fig. 2A). I implemented both algo-

rithms in Mathematica and ran them over one time step for 105

non-interacting molecules that all started at the same points on a

sphere or cylinder surface. The molecule rms step lengths were 0.5R,

where R is the sphere or cylinder radius. Comparison of the resulting

distributions to the exact ones (from Ghosh et al., 2012) showed

that the single projection method captures the distribution more

A B

C D

E F

G H

I J

Fig. 2. Surface-bound diffusion. (A) Single (red) and double (blue) projection

methods. (B, C) Molecular distribution resulting from single (red) and double

(blue) projection, compared with exact results (black); panel B is for a sphere

and C a cylinder. Insets show square root of mean square displacements,

measured along the curved surfaces, as functions of the rms step length;

both axes are normalized with respect to the radius of curvature. (D)

Algorithm for simulating diffusion across multiple panels. (E, F) Diffusion on

a surface with sharp bends. (G, H) Diffusion on a sphere, composed from 480

triangles. (I, J) Diffusion on a branched surface. In panels F, H and J, the black

lines represent exact results, the green points arose from simulations that

used 300 time steps that were each 1 ms long, and the orange points arose

from simulations that used one 300 ms time step. These simulations used 106

non-interacting molecules that started at the marked ‘starting points’. Insets

to these panels show deviation of simulation results about exact theory;

dashed lines represent one standard deviation for the expected statistical de-

viation that would arise due to the finite number of simulated particles (Color

version of this figure is available at Bioinformatics online.)

Particle-based simulation 713

Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: for example
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx2019;
Deleted Text: above
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: ,
Deleted Text: &hx2019;

accurately for both shapes (Fig. 2B and C). I also computed the

square root of the mean squared displacement measured along the

sphere or cylinder surface (Fig. 2B and C insets), which is directly

proportional to the simulated diffusion coefficient and thus shows

whether simulated diffusion has the correct rate. For the sphere, the

simulated diffusion coefficient was within 10% of the exact result

for all rms step lengths below the radius of curvature for the single

projection method but deviated by up to 32% for the double projec-

tion method. For the cylinder, the single projection method was in

error by up to 24% while the double projection method was in error

by up to 33%. These results show that the single projection method

is superior, so I kept the existing Smoldyn algorithm.

Smoldyn also used the single projection method when a molecule

diffused beyond its initial panel, projecting it to the adjacent neigh-

boring panel (if there were multiple neighbors, then Smoldyn chose

one of them randomly). However, this was inaccurate at bends, did

not allow diffusion across multiple panels in one step, and created

errors with branched surfaces (where one surface splits into two or

more surfaces). Thus, I replaced it with a new design (Fig. 2D). As

before, Smoldyn starts by computing a 3D Gaussian displacement

for a molecule. Smoldyn projects it to the infinite version of the mol-

ecule’s current panel, meaning that flat panels are treated as infinite

planes, cylindrical panels as infinite cylinders, and hemispherical

panels as spheres. If this places the molecule beyond the edge of its

current panel, Smoldyn determines which neighbor the trajectory

continues onto, choosing one at random if the surface branches

there, and bends the trajectory at the panel boundary into the local

plane of the new panel. If the trajectory reaches an edge that does

not have a neighbor, Smoldyn reflects the trajectory using ballistic

reflection. Smoldyn repeats this, bending or reflecting the trajectory

as appropriate, until the trajectory is used up.

These algorithms are exact for multiple planar panels that bend

along a single axis (Fig. 2E and F) and become exact as simulation

time steps are reduced towards zero (green points in Fig. 2F, H and

J; more precisely, they become exact as molecule rms step lengths

become much smaller than the local radii of curvature). They are

inexact for curved panels (Fig. 2B and C), multiple planar panels

that curve on two axes (Fig 2G and H), and branched surfaces

(Fig. 2I and J). In this last case, the probability of staying on the

original panel is too high and of transitioning onto the branches is

too low, which is difficult to avoid because the branch affects the

diffusion of all nearby molecules, including those that never en-

countered the branch. Biological membranes can be highly convo-

luted, such as during endocytosis, typically with curvature on two

axes. From above, Smoldyn is inexact in these cases but will be rea-

sonably accurate if rms step lengths are smaller than the radii of

curvature. As with other algorithms, this accuracy can be tested by

varying the simulation time step and observing if simulation results

change (Andrews, 2012). Comparison with Smoldyn’s prior algo-

rithms, from Smoldyn version 2.39, showed that diffusion of

surface-bound molecules now runs about 3.5 times faster when

using the same size time step (using the model shown in Fig. 2E)

and that reactions between surface-bound molecules exhibit better

accuracy (tested with reactions between molecules bound to a

sphere and a bacillus).

2.4 Excluded volume interactions
Smoldyn can simulate molecules as point-like particles that do not

occupy volume (Andrews and Bray, 2004). This is fast and typically

valid when the molecules occupy a small fraction of the system vol-

ume. Smoldyn can also simulate molecules as spheres that do occupy

volume to support research on the effects of macromolecular crowd-

ing or molecular interactions in confined spaces (e.g. Andrews et al.,

2015; Marquez-Lago et al., 2012).

Smoldyn represents excluded volume interactions by simulating

diffusion with Gaussian distributed displacements, as usual, and

then increasing the separation between any molecules that ended up

closer than the sum of their excluded volume radii, which is called

the binding radius. Although this repositioning can create additional

collisions with yet other molecules, Smoldyn ignores them for com-

putational efficiency and numerical stability. Smoldyn has been as-

signing new molecule positions using the overlap method: it

computes the ‘overlap’ as the difference between the binding radius

and the molecular separation and then computes the new separation

as the binding radius plus the overlap; the molecules stay on the axis

that included the molecule centers (Fig. 3A).

I investigated whether it would be more accurate if molecules

were repositioned using the reflection method, in which molecules

bounce off of each other according to their straight-line trajectories

(Fig. 3B). Here, Smoldyn computes the collision time as the time

when the molecule surfaces exactly touch, computes the reflection

plane as the plane tangent to the molecules’ contacting points at the

collision time, and reflects the molecule trajectories off of this plane.

In contrast to simulations of billiard ball collisions, which are other-

wise similar, Smoldyn conserves trajectory lengths rather than mo-

menta because doing so is closer to the physics of diffusing particles,

where momentum is meaningless (Purcell, 1977).

Both algorithms are exact in the limit of short time steps because,

in this limit, molecule surfaces are effectively flat on the size scale of

the rms step length and both algorithms become equivalent to reflec-

tion off of a flat surface. Reflection is an exact approach for simulat-

ing diffusion near an impermeable planar surface (Edelstein and

A B

C D

E F

Fig. 3. Excluded volume. (A) The overlap method, in which colliding mol-

ecules are moved to make the space between them equal to their prior over-

lap. (B) The reflection method, in which molecules reflect off each other.

(C, D) Angular and radial distributions of particles about a sphere, with essen-

tially exact results in black, the overlap method in blue, and the reflection

method in red. (E) A hard-sphere fluid simulation; volume is (100 nm)3 with

periodic boundaries, there are 6112 molecules with diameters of 5 nm and

diffusion coefficients of 65 mm2/s, and time ran for 6 ms in steps of 0.1 ns.

Simulation took 11 minutes on a 2013 MacBook Pro (and 1 min when

excluded volume reactions were ignored). (F) Radial distribution function for

simulation in panel E, showing theory from Chang and Sandler (1994) as a

black line and simulation data with red dots (Color version of this figure is

available at Bioinformatics online.)

714 S.S.Andrews

Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: ; Andrews <italic>et<?A3B2 show $146#?>al.</italic>, 2015
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx2019;

Agmon, 1993). This exact limit does not depend on the relative mol-

ecule radii or diffusion coefficients.

I compared these algorithms by simulating them with

Mathematica. Each simulation included a sphere at the origin with

radius R to represent one molecule and a particle that started a short

distance away from the sphere along the z-axis to represent the other

molecule. The particle diffused and interacted with the sphere using

one of the two algorithms. Mathematica ran the simulation for one

step using an rms step length 0:5R or 20 steps with an rms step

length of 0:5R=
ffiffiffiffiffiffi
20
p

, which simulated the effects of long and short

time steps with the same diffusion coefficient. Figure 3B and C show

the angular and radial distributions of particles about the sphere for

the two algorithms, for 105 particles that started 0:1R away from

the sphere surface. Using short time steps, both algorithms produced

essentially the same distributions (black lines), in agreement with

their being exact in the limit of short time steps. Comparison of the

single step results with the black lines shows that the reflection

method produced more accurate angular and radial distributions

than the overlap method. I also investigated the first, second, and

third moments of the particle distribution along the z-coordinate.

Again, the two methods led to essentially identical results with short

time steps (mean, standard deviation, and skewness, divided by R,

for 20 short steps and particle starting 0:1R away from sphere: 1.30,

0.38 and 0.35). With single steps, the reflection method results were

much closer to these ideal values (overlap method: 1.17, 0.45 and

�0.42; reflection method: 1.30, 0.39 and 0.13). Results were similar

for particles that started 20.2 and 0.5R away from the sphere.

Together, these results show that the reflection method produces

more accurate particle distributions.

As a further test, I used Smoldyn to simulate a hard-sphere fluid,

a widely used model system (e.g. Speedy, 1987; Thiele, 1963). I

scaled the parameters to make them comparable to hemoglobin in a

red blood cell, using a 5 nm molecular diameter and a 65 mm2/s dif-

fusion coefficient in dilute solution (see Andrews, 2012; Krueger

and Nossal, 1988; Muramatsu and Minton, 1988). Hemoglobin oc-

cupy about 25% of the cell cytoplasm volume (Krueger and Nossal,

1988), but I assumed 40% occupancy to make the test more de-

manding. Figure 3E shows a snapshot of the simulation and

Figure 3F shows the radial distribution function of the proteins,

which represents the distribution of separations between protein

pairs. The simulated data agree essentially perfectly with the theor-

etical result for hard spheres (from Chang and Sandler, 1994). The

simulation also showed that crowding decreased the hemoglobin

diffusion coefficient about 25%, to 49.8 mm2/s. Yet more tests

showed that Smoldyn also performed well when molecules had dif-

ferent radii and diffusion coefficients (available in the S94_archive/

Andrews_2016 Smoldyn example directory).

These excluded volume algorithms are independent of Smoldyn’s

treatment of molecule-surface interactions, in which Smoldyn only

considers molecule center positions and ignores molecule radii.

Moving the surface towards the molecules by one molecule radius

can effectively account for excluded volume, if desired (e.g.

Andrews et al., 2015). The algorithms are also independent of

Smoldyn’s treatment of chemical reactions, meaning that Smoldyn

can account for both excluded volume and chemical reactions for a

pair of molecules, but it ignores interactions between these proc-

esses. Thus, it is possible to run reaction-diffusion simulations in

which all molecules have excluded volumes, but the simulated reac-

tion rate constants may not equal the user’s requested values.

This approach to simulating excluded volume using hard spheres

maintains the design philosophy used throughout the software in

which Smoldyn simulates a well-defined model system and becomes

exact in the limit of short time steps. On the other hand, if models

require more realistic representations at the single-molecule size

scale, then software tools that represent excluded volume inter-

actions using softer potentials and/or non-spherical molecules,

including ReaDDy (Schöneberg and Noé, 2013) and SpringSaLaD

(Michalski and Loew, 2016) may be more appropriate (however,

SpringSaLaD’s excluded volume algorithm ignores diffusion that

occurred after molecular collision, making it less accurate than the

ones described here).

2.5 Single-particle tracking
Single-particle tracking studies, in which one observes the motion of

individual proteins or other particles (see Saxton, 2009; Hoze et al.,

2012), provide more information than ensemble measurements be-

cause they provide information about the distributions of behaviors.

They can also show when and where particles interact with other

structures or particles.

Smoldyn has not been ideal for modeling single particle tracking

because its molecules get replaced with new ones when they undergo

reactions, making it difficult to track a single molecule through its

bindings and unbindings. Using the fact that every simulated mol-

ecule in Smoldyn has a unique serial number, I addressed this prob-

lem by adding several options for reading and assigning serial

numbers. A modeler can now (i) specify that a reaction product

should have the same serial number as one of the reactants, (ii) log

the reactions and track the positions of molecules with specific serial

numbers and (iii) print out serial numbers along with other molecule

information. These enable collections of serial numbers to be

tracked throughout a simulation much as fluorescent labels can be

tracked with microscopy.

2.6 Libsmoldyn API
Nearly all cell biology behaviors arise from elementary processes

working together. These processes include molecular diffusion,

chemical reactions, and protein-membrane interactions, all of which

Smoldyn can simulate. They also include filament dynamics, bulk

flow, and dynamics of extended complexes, which Smoldyn cannot

simulate currently. Yet undiscovered processes may be important,

too. Because these processes need to work together, Smoldyn is inad-

equate for modeling many biological systems.

I developed the Libsmoldyn API to alleviate this problem. It is a

C/Cþþ language interface to the Smoldyn source code which en-

ables researchers to link Smoldyn to other software. With

Libsmoldyn, it is relatively straightforward to simulate a model by

using Smoldyn for the parts of the model that it can handle and to

write custom code (or use other ‘solvers’) for the other parts.

Libsmoldyn also helps with multi-scale simulators, where the

Smoldyn code simulates system portions that require single-

molecule resolution and other code simulates other portions. The

MOOSE (Multiscale Object-Oriented Simulation Environment)

neural simulator (Ray et al., 2008), for example, simulates dynamics

within neural spines using Libsmoldyn and signaling across multiple

cells using ordinary differential equations. Also, Virtual Cell

(Cowan et al., 2012) runs particle-based simulations using links to

the Smoldyn code, although not through Libsmoldyn.

Libsmoldyn includes about 100 functions for setting and getting

Smoldyn parameters. For example, one function instructs Smoldyn

to read a text input file and prepare the data structures. Other func-

tions can create a Smoldyn model purely through function calls,

without a text input file. Yet others can be called to run the simula-

tion for one or more time steps. The API includes a header file that

Particle-based simulation 715

Deleted Text: ,
Deleted Text: ,
Deleted Text: -
Deleted Text: ,
Deleted Text: ; <xref ref-type=
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: ,
Deleted Text: Application Programming Interface (
Deleted Text:)
Deleted Text: &hx2009;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: for example
Deleted Text: ,

defines the Smoldyn data structures, enabling linked code to read

any aspects of the Smoldyn simulation, including the simulation

state (linked code can also write to the data structures, although this

is not advised).

Linking to Smoldyn through the Libsmoldyn API is generally

preferable to working directly with the Smoldyn source code. It is

more convenient because the API has functions that are specifically

designed to handle most interactions that are likely to be necessary.

Also, it is safer because all API functions that manipulate the model

address the required modifications in all of the data structures at

once, thereby reducing the likelihood of creating internal inconsis-

tencies. In addition, the API functions check for errors in the input

parameters, returning errors if they would cause problems. Finally, I

plan to maintain the current API so that software that links to it will

continue to work, even as others and I continue to extend Smoldyn’s

internal code.

3 Conclusions

Smoldyn has proven to be a useful simulation tool for numerous re-

search projects. In the course of many of them, researchers have

needed software additions or identified algorithms that required im-

provement. This paper reports on those additions and improve-

ments. It describes two types of rule-based modeling, improved

methods for simulating the diffusion of surface-bound molecules

and excluded volume interactions, support for single-molecule

tracking, and a library interface. These additions work well with the

other software components and with each other. The focus has been

on the Smoldyn software in particular, but these developments

should have broader relevance because each involves new

approaches.

These extensions have not reduced Smoldyn’s functionality for

models that it ran previously. It still runs input files that were writ-

ten for older versions and gives either the same or more accurate re-

sults. In 2010, a model of a Michaelis-Menten reaction comprising

10 000 molecules, which ran for 10 s of simulated time in 1 ms time

steps, required 47 s to run (Andrews et al., 2010). On a 2013 Mac

Pro laptop, the same model using the essentially same software ran

in 21 s, because of the faster computer. The latest Smoldyn version

(2.45) also ran this model in 21 s, showing that the new features

have not slowed the software.

Acknowledgements

I thank Upi Bhalla, Weiren Cui, Jim Faeder, André Leier, Karen Lipkow,

François Nédélec, Masoud Nickaeen, Martin Robinson, Karin Sasaki, Hugo

Schmidt, Boris Slepchenko and Gerard Weatherby for useful discussions.

Much of this work was performed at the Isaac Newton Institute for

Mathematical Sciences during the program Stochastic Dynamical Systems in

Biology: Numerical Methods and Applications. I thank Radek Erban, David

Holcman, Sam Isaacson, and Konstantinos Zygalakis, who were the program

organizers, and the Institute staff. I thank Roger Brent, Erick Matsen and

Harlan Robbins for providing space at the FHCRC.

Funding

This work was supported by a Simons Foundation grant awarded to S.S.A.

and by EPSRC grant EP/K032208/1 awarded to the Isaac Newton Institute.

Conflict of Interest: none declared.

References

Andrews,S.S. (2009) Accurate particle-based simulation of adsorption, de-

sorption and partial transmission. Phys. Biol., 6, 046015.

Andrews,S.S. (2012). Spatial and stochastic cellular modeling with the

Smoldyn simulator. In: van Helden, et al. (eds) Bacterial Molecular

Networks: Methods and Protocols. Methods for Molecular Biology, 804,

519–542.

Andrews,S.S. (2016) Rule-based modeling using wildcards. Methods Mol.

Biol., submitted.

Andrews,S.S., and Bray,D. (2004) Stochastic simulation of chemical reactions

with spatial resolution and single molecule detail. Phys. Biol., 1, 137.

Andrews,S.S. et al. (2009). Stochastic models of biological processes. In:

Meyers, R. (ed). Encyclopedia of Complexity and Systems Science,

8730–8749. Springer, New York.

Andrews,S.S. et al. (2010) Detailed simulations of cell biology with Smoldyn

2.1. PLoS Comput. Biol., 6, e1000705.

Andrews,S.S. et al. (2015). Simulating macromolecular crowding with particle

and lattice-based methods (Team 3). In: Gilbert, D., Heiner, M., Takahashi,

K. and U. A. M. (eds). Multiscale Spatial Computational Systems Biology,

170–187.

Arjunan,S.N.V., and Tomita,M. (2010) A new multicompartmental reaction-

diffusion modeling method links transient membrane attachment of E. coli

MinE to E-ring formation. Syst. Synth. Biol., 4, 35–53.

Bartol,T.M. et al. (2015) Computational reconstitution of spine calcium tran-

sients from individual proteins. Front. Synaptic Neurosci., 7,

Blinov,M.L. et al. (2004) BioNetGen: software for rule-based modeling of sig-

nal transduction based on the interactions of molecular domains.

Bioinformatics, 20, 3289–3291.

Blinov,M.L. et al. (2005) ‘On-the-fly’ or ‘generate-first’ modeling?. Nat.

Biotechnol., 23, 1344–1345.

Bray,D., and Lay,S. (1997) Computer-based analysis of the binding steps in

protein complex formation. Proc. Natl. Acad. Sci. USA, 94,

13493–13498.

Chang,J., and Sandler,S.I. (1994) A real function representation for the struc-

ture of the hard-sphere fluid. Mol. Phys., 81, 735–744.

Chylek,L.A. et al. (2014) Rule-based modeling: a computational approach for

studying biomolecular site dynamics in cell signaling systems. Wiley

Interdiscip. Rev. Syst. Biol. Med., 6, 13–36.

Cowan,A.E. et al. (2012) Spatial modeling of cell signaling networks. Methods

Cell Biol., 110, 195.

Danos,V., and Laneve,C. (2004) Formal molecular biology. Theor. Comput.

Sci., 325, 69–110.

Dix,J.A., and Verkman,A. (2008) Crowding effects on diffusion in solutions

and cells. Annu. Rev. Biophys., 37, 247–263.

Drawert,B. et al. (2012) URDME: a modular framework for stochastic simula-

tion of reaction-transport processes in complex geometries. BMC Syst.

Biol., 6, 1.

Edelstein,A.L., and Agmon,N. (1993) Brownian dynamics simulations of re-

versible reactions in one dimension. J. Chem. Phys., 99, 5396–5404.

ElKalaawy,N., and Amr,W. (2015) Methodologies for the modeling and simu-

lation of biochemical networks, illustrated for signal transduction path-

ways: a primer. Biosystems, 129, 1–18.

Ghosh,A. et al. (2012) A “Gaussian” for diffusion on the sphere. Europhys.

Lett., 98, 30003.

Gillespie,D.T. (1977) Exact stochastic simulation of coupled chemical reac-

tions. J. Phys. Chem., 81, 2340–2361.

Goldman,J. et al. (2004) Size and composition of membrane protein clusters

predicted by monte carlo analysis. Eur. Biophys. J., 33, 506–512.

Gruenert,G. et al. (2010) Rule-based spatial modeling with diffusing, geomet-

rically constrained molecules. BMC Bioinformatics, 11, 307.

Hattne,J. et al. (2005) Stochastic reaction-diffusion simulation with MesoRD.

Bioinformatics, 21,

Hołyst,R. et al. (1999) Diffusion on curved, periodic surfaces. Phys. Rev. E,

60, 302.

Hoze,N. et al. (2012) Heterogeneity of AMPA receptor trafficking and mo-

lecular interactions revealed by superresolution analysis of live cell imaging.

Proc. Natl. Acad. Sci. USA, 109, 17052–17057.

716 S.S.Andrews

Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: ,

Jilkine,A. et al. (2011) A density-dependent switch drives stochastic clustering

and polarization of signaling molecules. PLoS Comp. Biol., 7, e1002271.

Johnson,M.E., and Hummer,G. (2014) Free-propagator reweighting integra-

tor for single-particle dynamics in reaction-diffusion models of heteroge-

neous protein-protein interaction systems. Phys. Rev. X, 4, 031037.

Khan,S. et al. (2012) Spatiotemporal maps of CaMKII in dendritic spines.

J. Comput. Neurosci., 33, 123–139.

Kinney,J.P. et al. (2013) Extracellular sheets and tunnels modulate glutamate

diffusion in hippocampal neuropil. J. Comp. Neurol., 521, 448–464.

Krueger,S., and Nossal,R. (1988) SANS studies of interacting hemoglobin in

intact erythrocytes. Biophys. J., 53, 97.

Lok,L., and Brent,R. (2005) Automatic generation of cellular reaction net-

works with Moleculizer 1.0. Nat. Biotechnol., 23, 131–136.

Marquez-Lago,T. et al. (2012) Anomalous diffusion and multifractional

brownian motion: simulating molecular crowding and physical obstacles in

systems biology. Syst. Biol., IET, 6, 134–142.

Mayer,B.J. et al. (2009) Molecular machines or pleiomorphic ensembles: sig-

naling complexes revisited. J. Biol., 8, 1.

Michalski,P.J., and Loew,L.M. (2016) SpringSaLaD: a spatial, particle-based

biochemical simulation platform with excluded volume. Biophys. J., 110,

523–529.

Muramatsu,N., and Minton,A.P. (1988) Tracer diffusion of globular proteins

in concentrated protein solutions. Proc. Natl. Acad. Sci. USA, 85,

2984–2988.

Purcell,E.M. (1977) Life at low Reynolds number. Am. J. Phys., 45, 3–11.

Ray,S. et al. (2008) A general biological simulator: the multiscale object

oriented simulation environment, MOOSE. BMC Neurosci., 9(Suppl 1),

P93.

Robinson,M. et al. (2015) Multiscale reaction-diffusion simulations with

Smoldyn. Bioinformatics, 31, 2406–2408.

Saxton,M.J. (1987) Lateral diffusion in an archipelago. the effect of mobile

obstacles. Biophys. J., 52, 989–997.

Saxton,M.J. (2009). Single particle tracking. In: Jue, T. (ed). Fundamental

Concepts in Biophysics: Volume 1. Handbook of Modern Biophysics,

Humana Press, New York, pp. 147–179.

Schaff,J. et al. (1997) A general computational framework for modeling cellu-

lar structure and function. Biophys. J., 73, 1135.

Schmidt,H.G. et al. (2014) An integrated model of transcription factor diffu-

sion shows the importance of intersegmental transfer and quaternary pro-

tein structure for target site finding. PLoS One, 9, e108575.

Schöneberg,J., and Noé,F. (2013) ReaDDy-a software for particle-based reac-

tion-diffusion dynamics in crowded cellular environments. PloS One, 8,

e74261.

Schöneberg,J. et al. (2014) Simulation tools for particle-based reaction-diffu-

sion dynamics in continuous space. BMC Biophys., 7, 1.

Sneddon,M.W. et al. (2011) Efficient modeling, simulation and coarse-

graining of biological complexity with NFsim. Nat. Methods, 8, 177–183.

Speedy,R.J. (1987) Diffusion in the hard sphere fluid. Mol. Phys., 62,

509–515.

Stefan,M.I. et al. (2014) Multi-state modeling of biomolecules. PLOS

Comput. Biol., 10, e1003844.

Stiles,J.R., and Bartol,T.M. (2001). Monte Carlo methods for simulating real-

istic synaptic microphysiology using MCell. In: De Schutter, E. (ed).

Computational Neuroscience, Realistic Modeling for Experimentalists,

chapter 4. CRC Press, Boca Raton, FL, 87–127.

Stiles,J.R. et al. (1996) Miniature endplate current rise times less than 100

microseconds from improved dual recordings can be modeled with passive

acetylcholine diffusion from a synaptic vesicle. Proc. Natl. Acad. Sci. USA,

93, 5747–5752.

Strongin,D.E. et al. (2014) Nucleolar tethering mediates pairing between the

IgH and Myc loci. Nucleus, 5, 474–481.

Stundzia,A.B., and Lumsden,C.J. (1996) Stochastic simulation of coupled re-

action–diffusion processes. J. Comput. Phys., 127, 196–207.

Subburaj,Y. et al. (2015) Bax monomers form dimer units in the membrane that

further self-assemble into multiple oligomeric species. Nat. Commun., 6,

Takahashi,K. et al. (2005) Space in systems biology of signaling pathways–to-

wards intracellular molecular crowding in silico. FEBS Lett., 579, 1783–1788.

Takahashi,K. et al. (2010) Spatio-temporal correlations can drastically change the

response of a MAPK pathway. Proc. Natl. Acad. Sci. USA, 107, 2473–2478.

Thiele,E. (1963) Equation of state for hard spheres. J. Chem. Phys., 39,

474–479.

Tolle,D.P., and Le Novère,N. (2010) Meredys, a multi-compartment reaction-

diffusion simulator using multistate realistic molecular complexes. BMC

Syst. Biol., 4, 24.

van Zon,J.S., and Ten Wolde,P.R. (2005) Simulating biochemical networks at

the particle level and in time and space: Green’s function reaction dynamics.

Phys. Rev. Lett., 94, 128103.

Zavala,E., and Marquez-Lago,T.T. (2014) The long and viscous road: un-

covering nuclear diffusion barriers in closed mitosis. PLoS Comput. Biol.,

10, e1003725.

Particle-based simulation 717

