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Abstract

Particle-based simulators represent molecules of interest with point-like particles that diffuse
and react in continuous space. These simulators are often used to investigate spatial or
stochastic aspects of biochemical systems. This paper presents new particle-based simulation
algorithms for modeling interactions between molecules and surfaces; they address
irreversible and reversible molecular adsorption to, desorption from and transmission through
membranes. Their central elements are: (i) relationships between adsorption, desorption and
transmission coefficients on the one hand, and simulator interaction probabilities on the other,
and (ii) probability densities for initial placements of desorbed molecules. These algorithms,
which were implemented and tested in the Smoldyn simulator, are accurate, easy to implement
and computationally efficient. They allow longer time steps and better address reversible
processes than an algorithm that Erban and Chapman recently presented (Physical Biology
4:16-28, 2007). This paper also presents a method for simulating unbounded diffusion in a
limited spatial domain using a partially absorbing boundary, as well as new solutions to the
diffusion differential equation with reversible Robin boundary conditions.

This article has associated online supplementary data files

Nomenclature D, D normal and reduced diffusion coefficient (L2
T_l 9 1)

Units are given in parentheses, assuming a three-dimensional  J, J(r) flux parallel to the x-axis and flux vector (L2 T~ 1)

system: L = length, T = time and 1 = unitless. kK normal and reduced desorption rate constant
(T, 1)

n(r) unit outward normal for the bounding surface (1)

Roman symbols P,, P, adsorption and desorption probability (1)

P.r, P;g transmission probability for front or back (1)

C(x,t) concentration in solution; time is omitted for p(x) spatial probability density (L™")
steady state (L™3) q; emission rate of the source j (T™!)
C(x,z) Laplace transform of solution concentration (L™  r,r; position on the bounding surface and of the source
T J @)
Co, C1o concentration adjacent to and infinitely far from s root mean square step length (L)
the surface (L) t, At time and simulation time step (T)
Cu(t) concentration adsorbed to the surface; time is position on the x-axis (L)
omitted for steady state (L) z Laplace transform conjugate of time (T~!)
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Greek symbols

K adsorption coefficient (L T~')

KF pcilrlrneability coefficient from the front side (L

KB ger]n)leability coefficient from the backside (L

k', kF kg ;[‘edu)ced adsorption or permeability coefficient
(1

1. Introduction

Cell modeling studies typically represent molecular
interactions with mass action methods. These methods are
simple, well supported by software (e.g. Copasi [21] and
Virtual Cell [32]), and fully adequate for a wide variety
of studies. However, they cannot represent the natural
stochasticity that arises within and between cells [38], nor
the intricate intracellular spatial organization that most cell
systems exhibit. To investigate these topics, many scientists
use more detailed modeling methods (reviewed in [4]).
Farticle-based simulation is one of these more detailed
methods. It represents individual molecules with point-like
particles that behave in accordance with elementary processes,
including diffusion and chemical reactions. For typical
cell biology systems, particle-based simulation can support
spatial resolution to scales of several nanometers [1, 14],
can simulate up to tens of minutes of real time [23] and
can represent hundreds of thousands of simulated molecules
[2]. Freely available particle-based simulators include Cell++
[39], ChemCell [34], MCell [22] and Smoldyn [2]. Using
these tools, researchers have shown, for example, that neural
signaling may depend upon neurotransmitter release from sites
that are away from the synapse [14] and that stable protein
concentration gradients may arise in bacterial cells [31].
Recently, Erban and Chapman developed particle-based
algorithms for simulating molecular adsorption to surfaces
[18] (figure 1(a)). They addressed the following problem:
given a typical particle-based simulator design [3, 22, 35]
(figure 2), in which molecules diffuse in discrete steps and
either adsorb to (with adsorption probability P,) or reflect
from any surface they encounter, how should the simulator
compute this adsorption probability from the surface’s physical
adsorption coefficient? Their result (equation (10) of [18]) is

p [T At )
a — K s
D

where « is the adsorption coefficient (defined below and
in the glossary), At is the simulation time step and D is
the molecular diffusion coefficient. Bartol and co-workers
[7] derived essentially the same equation 16 years earlier
(equation (6) of [7]) for the closely related problem of
simulating reactions between solution-phase and surface-
bound molecules. Also, Singer and co-workers recently
generalized equation (1) to multi-dimensional systems with
molecular drift and anisotropic diffusion matrices [41].

All of these derivations of equation (1) assumed well-
mixed systems, in which molecular concentrations are spatially
uniform throughout the solution. An assumption about the

(a) Model for adsorption, desorption

(b) Model for partial transmission
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Figure 1. (a) Model system for adsorption and desorption.
Molecules, shown with dots, adsorb to the gray surface with the
adsorption coefficient « and desorb with the rate constant k.

(b) Model system for partial transmission. Molecules transmit from
the front side of the surface (x > 0) to the back side (x < 0) with the
permeability coefficient «  and transmit from back to front with the
permeability coefficient « p.

average molecular positions is required for the adsorption
probability to be independent of the precise position that each
molecule diffused from. However, the well-mixed assumption
is inconsistent with the problem definition because irreversible
molecular adsorption to surfaces necessarily creates a local
concentration gradient. Regardless of the starting state, this
gradient develops rapidly in the immediate vicinity of the
surface and approaches the time-invariant steady state (see
section 3.3.1 of [16] and section 5, below). As a result,
molecular concentrations near adsorbing surfaces, whether
physical or simulated, are likely to spend the vast majority
of their time much closer to the steady state than to the well-
mixed state.

In this paper, we re-investigate the problem that Erban
and Chapman posed, but for steady-state systems rather than
well-mixed systems. The relationship we find between the
adsorption probability and the adsorption coefficient enables
substantially more accurate simulations than equation (1) does.
We also develop related algorithms for simulating irreversible
desorption, reversible adsorption and either irreversible or
reversible transmission through permeable surfaces. Together,
these algorithms enable quantitative simulation of most
elementary molecule—surface interactions. Examples include
peripheral membrane protein binding and release, membrane
permeability and heterogeneous catalysis. Where coarse-
grained approximations are appropriate, our algorithms
also support simulation of ligand binding to receptors or
molecular transport through channels or pores. In addition, our
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Figure 2. Particle-based simulator design assumed throughout this
work. The probability, P, refers to the adsorption, desorption, or
partial transmission probability, as appropriate, and ‘rand()’ is a
uniformly distributed random number between 0 and 1. This paper
presents molecule—surface interaction probabilities (P) with which
simulators following this design will adsorb, desorb and transmit
molecules at the correct rates.

appropriate

adsorption algorithm enables a method for efficiently modeling
unbounded diffusion in a limited spatial domain, which we
discuss at the end of this paper.

A specific example that illustrates the need for accurate
adsorption algorithms arises in the yeast pheromone response
system (reviewed in [6]), a model eukaryotic signaling
system. Upon pheromone stimulation, pheromone-sensitive
cells execute a series of actions, of which a central one
is that the Ste5 protein translocates from the cytoplasm to
the plasma membrane [37]. Colman-Lerner and co-workers
recently recorded microscopy image sequences that show this
translocation [15]. Because their data are two-dimensional
images of three-dimensional cells, including in-focus and out-
of-focus portions, they require further analysis to determine the
adsorption coefficient between Ste5 and the membrane, which
could lend insights into the interaction mechanisms. This
analysis could be performed relatively easily by adjusting a
simple computer model until it agreed with the microscope
images; the simulator that ran this model would require
accurate adsorption algorithms. Afterward, the adsorption
coefficient between Ste5 and the plasma membrane could be
used in new spatial simulations of the pheromone response
system. The resulting simulations, which would again require
accurate adsorption algorithms, might lend further insights
into the yeast signaling system dynamics or signal processing
(see e.g. [24, 28]).

2. Model systems

We explore one model system for adsorption and desorption
and another for partial transmission (figure 1). The
adsorption/desorption system extends over all x > 0 while
the partial transmission system extends over all space. Both
active surfaces are at x = 0. While these models are
three-dimensional for convenient visualization, they can be
described equally well with fewer dimensions because their
average molecular concentrations are translationally invariant
parallel to the surfaces; the mathematics throughout this paper
uses one dimension.

We assume that solution-phase molecules move solely
by diffusion. This means we treat water and other un-
modeled species only through their implicit contributions to
the Brownian dynamics of the modeled molecules. It also
means we ignore intermolecular interactions between modeled
molecules, which is typically valid when their concentrations
are low. These approximations allow us to describe diffusion
with Fick’s laws [11, 16]:

aC (x,1)

2
aC (x,1) :Da C(x,t)’ 3)
ot dx2
where J is the average molecular flux toward positive x and
C(x, t) is the average concentration at position x and time . We
call C(x, 1), which is technically a distribution function [26],
the concentration profile.
Adsorption/desorption model system definition. The net
adsorption rate in the adsorption/desorption system is

aC, (1) _D aC (x,1)
ot 0x

where C,(¢) is the average concentration of molecules that
are adsorbed to the surface at time ¢ and k is the desorption
rate constant. The first equality expresses the conservation
of molecules between the solution and surface phases. More
precisely, it states that the rate of adsorption onto the surface
equals the flux of solution-phase molecules toward the surface,
measured adjacent to the surface (see equation (2)). The
second equality expresses the adsorption rate in terms of the
solution and surface concentrations. The first term on the
right-hand side of the equation is the Robin or radiation
boundary condition [12, 16, 19], in which the adsorption
rate is proportional to the concentration of solution-phase
molecules at the surface. The proportionality constant, «, is the
adsorption coefficient. In this model system, « can range from
zero, for acompletely inert surface, to infinity, for a surface that
adsorbs molecules immediately upon contact. Physically, « is
limited to about the thermal velocity of potential adsorbents
[13], which is (kBT/m)%, where kg is Boltzmann’s constant,
T is the temperature and m is the molecule’s mass, because
this velocity determines how frequently molecules collide
with the surface (for a 50 kDa protein at 37 °C, k < 7 X
10% um s~!). Note that the Robin boundary condition does
not depend on the surface-bound concentration, so it does not
account for surface saturation (in contrast to the Langmuir

=kC(0,1) —kCa(r), (4)

x=+0
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equation [27]). Also, note that authors frequently use the
term ‘adsorption coefficient’ to mean other things, such as
the adsorption equilibrium constant [9, 10, 40] (see below)
or an exponent for a variant of the Langmuir equation [20].
The second term on the right-hand side of equation (4) is
the desorption rate. Its proportionality constant, k, can also
range from zero to infinity, now representing no desorption and
instantaneous desorption, respectively. According to Chou
and D’Orsogna [13], desorption rates are typically between
10~* s~ ! and 10* s~

Partial transmission model system. The net flux of
molecules through the permeable surface, from front to back,
is

L, 3C (1) _ @
8'x x=—0 ax x=+0
= kpC (40, 1) — k5 C(—0, 1). )

In analogy to prior definitions, xkr and kp are the
permeability coefficients from the front of the surface (which
faces the positive x-axis) to the back, and from the back to
the front, respectively. Equation (5) specifies the surface
sides with +0 for the front and —0 for the back because
the concentration profile is typically discontinuous at x =
0. As before, the first equality expresses the conservation
of molecules and the second equality represents the Robin
boundary condition. Again, this equation ignores saturation;
for example, it does not account for ion channels operating
at capacity. In general, permeability coefficients are large for
molecules that tend to partition into the membrane as well
as for molecules with high diffusion coefficients within the
membrane (see [8]). Paula et al [33] found that permeability
coefficients across a 27 A phosphatidylcholine bilayer are
about 3.5 x 1078 um s~! for potassium ions, 0.014 um s!
for urea, 0.027 um s~ for glycerol and 150 um s~! for water.

3. Simulator design

Figure 2 presents the simulator design assumed throughout
this work. Smoldyn [2] follows this design, and MCell [22]
and ChemCell [35] use similar approaches.

In step 1, the simulator diffuses molecules for a
fixed amount of time with Gaussian-distributed random
displacements, while ignoring any surfaces or bimolecular
interactions.  The standard deviation of these Gaussian
distributions, called the root mean square (rms) step length, is

2D At. (6)

This is a characteristic length for the simulation, against
which we previously compared intermolecular interaction
distances [3] and surface curvature radii [2]. Molecules
move about an rms step length at each time step, so the
planar surfaces in our model systems accurately represent
membranes that have curvature radii which are much larger
than the rms step length, and are less accurate for more tightly
curved membranes. For either model system, a diffusive step
transforms a starting concentration profile, C(x, f), to

! ex (_x_2> 7)
svan P\

S =

CO(x,t) =C(x,1) %

The star represents convolution and the term on its right
is a Gaussian with unit area and standard deviation s.

In step 2, the simulator addresses any solution-phase
molecules that diffused across the surface in step 1, as well as
the possible desorption of any surface-bound molecules. The
former molecules adsorb to the surface with probability P,,
transmit through it with probability P,, and otherwise reflect
off of it using ballistic reflection [3]. The latter molecules
desorb with probability P,; the simulator displaces desorbed
molecules away from the surface according to the probability
density p(x). We solve for P,, P,, P; and p(x) below. The
simulator does not perform multiple surface interactions, such
as both adsorption and desorption, on the same molecule so as
to improve computational efficiency and to make their order
of execution irrelevant (however, the algorithms do account
for the multiple surface interactions that physical molecules
may undergo). Step 2 transforms the adsorption/desorption
system concentration profile to

CcO (x,1) = { 0

x <0
CO (x, 1)+ (1= Py) CV (—x, 1) + PyCq (1) p (x) :

x>0
(3)

It also transforms the adsorbed concentration to
0

CO (1) = (1 - P)Ca (1) + P / O yde. )

—00

The analogs of these equations for the partial transmission
system are not shown because they are more complicated and
less useful.

This design for step 2 incorporates two simplifications
for good computational efficiency. First, P, and P, do
not depend on how far molecules are from surfaces, but
instead depend only on static properties, such as diffusion and
adsorption coefficients. This allows a simulator to compute
these probabilities just once for a simulation, rather than once
for each molecule—surface interaction. Secondly, the simulator
ignores all molecules in the underlying model systems that
diffused across the surface during step 1, but that returned
back to the side where they started before the end of the
time step (see section 3.2 of [3] and section 2.2 of [18]).
In preliminary work, accounting for these additional surface
contacts proved computationally intensive, complicated to
implement and minimally more accurate.

In step 3, the simulator performs chemical reactions [3].
We assume that any reactions are slow enough that their effects
on concentrations near surfaces are negligible, where the rms
step length provides the necessary length scale. In step 4, the
simulator increments the simulation time. This updates the
concentration profile and surface concentration to

C(x,t+At)=CP(x,1) (10)
C,(t+At)=CP@). (11)
Equation (10) applies to both model systems, while

equation (11) only applies to the adsorption/desorption
system. By definition, C(x, ¢ + Af) equals the starting
concentration profile, C(x, f), if and only if they represent
a steady state. Ordinarily, the adsorbed concentration, C,(?),
would also have to be constant at steady state. In fact, we
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Figure 3. Steady-state concentration profiles for model systems that
(a) reversibly or irreversibly adsorb molecules to a surface or

(b) reversibly transmit molecules through a surface. The gray line at
x = 0 represents the surface.

require this time independence for reversible adsorption but
not for irreversible adsorption. We do not require it for
irreversible adsorption because (i) we wish to investigate a
constant adsorption flux and (ii) the adsorbed concentration
does not affect other system aspects. Finally, the simulator
performs any observations of the system in step 5. It then
returns to step 1 to start the next time step.

4. Interaction probabilities

In this section, we relate the molecule—surface interaction
probabilities to their respective coefficients for accurate
steady-state simulation. =~ We also derive the necessary
probability densities for desorbed molecule displacements.
These results are presented as five algorithms, along with
several variants. Figure 5 presents the main results
graphically, the supplementary information (available at
stacks.iop.org/PhysBio/6/046015) presents them in tabular
form, and several equations below approximate them with
interpolating functions. Also, the supplementary information
includes the C language library files that Smoldyn uses to
perform the necessary table look-up and interpolation. Except
as noted, most results in this section were computed with
Mathematica software [44].

Unitless reduced variables, shown with a prime symbol,
simplify several results. We use the simulation time step as
the standard time unit and the rms step length as the standard

S S Andrews
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Figure 4. Steady-state concentration profiles at different steps of the
simulation process. These apply to (a) irreversible adsorption and
(b) reversible adsorption. Solid lines represent the profiles at both
the beginning and end of time steps, long-dashed lines represent the
profiles after the simulator’s step 1, and the short-dashed line in
panel B represents the profile after the reflection and adsorption
portions of step 2, but before desorption (this situation does not
apply to panel A). Areas on the figure represent molecular
populations, as labeled. The gray line at x = O represents the
surface. Panel A results were computed with the simulation
emulator (see the main text and supplementary information
available at stacks.iop.org/PhysBio/6/046015) and panel

(b) with Mathematica software [44].

length unit. From these, the reduced adsorption coefficient,
desorption rate constant and diffusion coefficient are

,_ kAt kAt

k' = 12

. ) (12)

kK = kAt (13)

D = DAr 1 (14)
= =3

Reduced permeability coefficients, xr’ and «p’, are
analogous to the reduced adsorption coefficient (equation

(12)).
4.1. Algorithm I: irreversible adsorption

Consider the adsorption/desorption system and assume irre-
versible adsorption (v > 0 and k = 0). Solving equations (3)
and (4) shows that the model steady-state concentration profile,
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Figure 5. Relationships between transition coefficients and transition probabilities, and initial separations between surfaces and desorbed
molecules. (a) Relationship between k" and P, for irreversible adsorption. The solid black line, calculated by the simulation emulator and
approximated by equation (21), enables accurate adsorption simulation. Points with one standard deviation error bars represent results from
stochastic simulations of a steady-state system (see supplementary information for details available at stacks.iop.org/PhysBio/6/046015).
(b) Probability densities for the initial separation between a desorbed molecule and the surface that it desorbed from. The solid line
represents the density that should be used for irreversible desorption (equation (25)) and the dashed line represents the density for reversible
adsorption (equation (33)). (c) Relationships between P, (solid black lines), P, (dashed red lines), «’ (abscissa) and k" (marked on figure)
for reversible adsorption; these are also given in equations (32) and (37). The k" = 0 desorption probability line is coincident with the
abscissa. (d) Relationships between P, (solid black lines), P, (dashed red lines), « »’ (abscissa) and « 5" (marked on figure) for reversible
transmission; these are also given in equations (47) and (48). The k3’ = 0 transmission probability line is coincident with the abscissa. The
green bold long-dashed line presents the transmission probabilities for the condition that x 3" = x ’. Where present, the dotted blue line

represents the relationship given by equation (1).

C(x), increases linearly with distance away from the surface
and the surface concentration increases at a constant rate
(figure 3(a)),

K
C(x)=C0<Bx+1>, x>0 (15)
3C,
Bt(t) = «Co, (16)

where Cj is the solution-phase concentration at x = 0.
(Equation (3) and the outer portions of equation (4) are the
equations of motion for C(x,f) and C, (%), respectively, while the
latter two portions of equation (4) give the necessary boundary
condition.) Equation (15) becomes physically unreasonable
as the system increases in size because C(x) is unbounded;
however, this model is likely to be physically correct near the

surface, so it is adequate for our work. As before, note that the
concentration profile and adsorption flux are time invariant at
steady state.

In an exact algorithm, meaning one in which the
simulated system is theoretically indistinguishable from the
underlying model system, the average simulated steady-
state concentration profile would equal equation (15). We
determine whether this is possible by seeing if our simulator
design can preserve the model steady-state profile over one
time step. Step 1 (equation (7)) transforms equation (15) to

oo 1 AV
CWx, 1) = / Co<£x/ + 1) exp[—u} dx’.
0 D s/2m

2s2

a7


http://stacks.iop.org/PhysBio/6/046015

Phys. Biol. 6 (2009) 046015

S S Andrews

Steps 2—4 (equations (8) and (10)) then transform this profile
to

2 2
C(x,t+Ar)=Cy {K/‘/ —(l+P)e =7+ |:1 +2k'x
T

3 1—Pa+2/c’(1+Pa)xerfc (L)
2 V2

for x > 0. Equation (18) is the concentration profile at
the end of the time step. Comparing equations (15) and
(18) shows that they cannot equal each other for arbitrary
k" and x values. Thus, equation (15) is a steady state for the
model system but not for our simulator design, which means
that our simulator design cannot treat irreversible adsorption
exactly. (The simplifications in step 2, which we included for
computational efficiency, cause this inexactness.)

Knowing that simulated concentration profiles would
necessarily be inexact, I computed the adsorption probabilities
that yield the correct adsorption rates with a ‘simulation
emulator’ (see figure 4(a) and the supplementary information
available at stacks.iop.org/PhysBio/6/046015). Each emulator
run started with a fixed adsorption probability and a well-mixed
numerical concentration profile (which extended from —6 to
+10 rms step lengths and was tabulated at 401 equally spaced
points, plus additional points immediately above and below 0
for higher accuracy). The emulator iterated steps 1 and 2, using
equations (7)—(9), until the system was essentially at steady
state (as determined by the adsorption rate changing by less
than 0.01% between sequential iterations). It addressed the
region with x < —6 s by extrapolating the concentration profile
with an error function, and it addressed the region with x >
10 s by fixing these concentrations to 1. Once at steady state,
it fit a straight line to the final concentration profile (x ranged
from 3 s to 7 s to avoid edge effects), from which it calculated
the effective reduced adsorption coefficient using

m
- 2Cy

Equation (19) derives from equation (15), with m as the
concentration profile slope (Cox /D) and C as the intercept.
Because the emulator could not actually reach the steady state,
it performed the above routine twice, starting from different
states; it started with C(x, 0) equal to either O or 1 so that it
would approach the steady-state profile from both above and
below. Finally, the emulator averaged the two results to yield
a final k' value. These «’ values are almost certainly accurate
to within £107® because (i) the two intermediate solutions
never differed by more than 107, and (ii) more conservative
choices for emulator parameters (number of tabulated points,
size of x-domain and number of iterations) affected results by
even smaller amounts.

Figure 5(a) shows the emulator results, oriented so that P,
depends on «’. Figure 5(a) also shows stochastic simulation
results, generated by Smoldyn, for systems that were similar to
those that the emulator quantified (supplementary information
available at stacks.iop.org/PhysBio/6/046015). The close
agreement between the two sets of results lends confidence
in the emulator software, the Smoldyn software and the
mathematical analysis. When reduced adsorption coefficients

(18)

K_/

19)

are small, the emulator results agree with equation (1). This
makes sense because small «’ values imply either: (i) small
concentration gradients (because « is small or D is large), so
the steady state is similar to the well-mixed state, or (ii) a
small simulation time step, so molecules diffuse over short
distances and the concentration gradient affects the simulated
adsorption rate minimally. On the other hand, the emulator
results are up to a factor of 2 smaller than equation (1) for larger
k' values. This implies that simulators basing their adsorption
probabilities on equation (1) would simulate adsorption too
quickly in many situations. Finally, figure 5(a) shows that
k" values larger than about 0.86 cannot be modeled with our
simulator design because the adsorption probability cannot
exceed 1. This means that large adsorption coefficients can
only be simulated quantitatively by using small time steps.
(This limitation arises from simplifications that we made for
computational efficiency in the simulator’s step 2.)
Polynomial fits to the emulator’s relationship between «’
and P,, which may be more convenient than the raw data, are

1
k' = ——=P, +0.247 61 P? +0.006 16 P +0.203 84 P,
V2
(20)

P, = /2w —3.333 21k +3.356 69> — 1.520 92«
(21)
The initial terms were constrained with equation (1) to
make these fits exact as «’ or P, tends toward 0. These

equations agree with the tabulated data to within 1% over
their entire domains.

4.2. Algorithm II: irreversible desorption

Continuing with the adsorption/desorption system, we now
consider irreversible desorption (« = 0 and k > 0). Desorption
is a simple first-order process, like a first-order chemical
reaction, so a molecule should desorb during a time step with
probability [3, 42]

Py =1—¢kar (22)
This is exact for all possible desorption rate constants and
simulation time steps.

The more difficult question concerns where the simulator
should place desorbed molecules. In one algorithm variant,
the simulator places them adjacent to the surface. This ignores
diffusion occurring between when a molecule desorbs and
the end of the time step, which does not affect the accuracy
of the total surface- and solution-phase concentrations, but
means that this algorithm variant yields inexact concentration
profiles.

A better variant displaces desorbed molecules away from
the surface. To calculate the probability density for this
displacement, consider a molecule that desorbs at time ¢, where
t is between the start of the time step at time 0 and the end at
time At. The probability density for this molecule’s position
at time At is [16]

;e_ﬁiﬂ) s
oD (At —1t)

p (x, At|desorb at t) = x > 0.

(23)
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We denote the probability density that the molecule
desorbs at time ¢, given that it desorbs between 0 and A,
as p;(t). Treating p,(¢) as a weighting factor for equation (23),
the spatial probability density for a molecule that desorbs at
an unknown time between 0 and At is

At t 2
p(x, Ar) = pt—()e”mw*” dr, x > 0.
o ~TD (AL —1)
(24)

To be consistent with equation (22), p,(f) should equal
k/P, exp(—kt). However, this makes p(x,Af) depend on k,
which is inconvenient. So, we make the approximation that
the molecule is equally likely to desorb at any time during the
time step, which simplifies p, () to 1/At. This approximation
is valid when kAr << 1 because the exact exponential function
approaches 1/At in this limit. Because equation (22) already
ensures accurate surface and solution concentrations and we
are just refining the solution concentration profile here, this
approximation is also likely to be acceptable for substantially
larger values of kAt¢ as well. Using the approximation,
equation (24) integrates to

2J2 2 2% X
svV2
Figure 5(b) shows this displacement probability density with
a solid line.

A final task makes equation (25) useful. We need a
relationship with which a simulator can transform random
numbers that are uniformly distributed between 0 and 1 into
random numbers that obey the probability density in equation
(25). We do this by integrating and inverting equation (25)
[36]. The integral, from O to x, is

xV2 2 x? x? X
Px)y=—=e 2> — =+ |1+ Jerf——.
x) s\ 52 < s2) sv2
This cannot be solved for x analytically, so I inverted it
numerically. A least-squares rational function fit to the result
is

(25)

(26)

_0.571825P —0.552 246 P?
= T 1.53908P +0.546424P2"
Equation (27) converts a uniform deviate, P, into the desired
deviate, x. Compared to the numerical solution, it is in error
by less than 0.02 s for nearly all P-values.
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4.3. Algorithm III: reversible adsorption/desorption

If adsorption is reversible (x > 0 and k > 0), the adsorption
and desorption rates equal each other for the system to be at
steady state. Adding this condition to equations (3) and (4)
yields the steady-state concentrations (figure 3(a)),

C(x)=Cc, x>0 (28)
K
Ca = 7Cox (29)

where C4 is the solution concentration. In contrast to
the preceding investigations of irreversible processes, this
steady state is a well-mixed state. This steady state is

also an equilibrium state because there are no net molecular
fluxes. The ratio « /k, which clearly equals C,/Cw, is the
adsorption equilibrium constant; it is analogous to the familiar
equilibrium constant for reversible reactions [5].

As in section 4.1, we determine whether our simulator
design can treat reversible adsorption exactly by seeing if it
can preserve the model concentration profile over one time step
(see figure 4(b)). Substituting equation (28) with equation (7)
yields

CY(x,1) = Csp (30)

1 X
1 — —erfc——— ).
( 2 2y DAt)
The adsorption and reflection portions of step 2 (see equation
(8)) then transform the concentration profile to

P, o> )
—erfc——].
2 24/ Dt
Finally, the desorption portion of step 2 transforms this result
back to the starting condition, if and only if

C% (x,1) = Coo <1 - (31)

P, K T
L . (32)
P, k\V DA
) =+ [T erfe— " 33)
X) = — _ .
P 2\ DA 2 DAt

Thus, our simulation design can simulate reversible adsorption
exactly under equilibrium conditions. Equation (32), which
relates the adsorption and desorption probabilities, arises from
the constraint that equal numbers of molecules must adsorb
and desorb during each time step, on average. Equation (33),
which is the probability density for desorbed molecule
displacements and is shown in figure 5(b) with a dashed
line, causes desorbed molecules to exactly replace those that
adsorbed. This density is the ratio of the function C(x,t + Af)
— C®)(x,1) and its integral (the ‘desorbed molecules’ region
of figure 4(b)), so that the probability density has unit area.

We integrate and invert equation (33) to make it useful.
Integration yields

Pa)=l-e+5 [Ferfe
x)=1—¢e" 22 + — | —erfc .
sy 2 sﬁ

A rational function fit to the numerically calculated inverse
function is

(34)

0.729614P —0.702 52 P?
1= 1.47494P + 0484371 P2
As before, P is a uniform deviate between 0 and 1 and x is
the initial displacement for a desorbed molecule. This fit is in
error by less than 0.02 s for nearly all P-values.

The remaining question is how P, or P, should be chosen.
Their solutions for irreversible adsorption (equation (21)) and
irreversible desorption (equation (22)) do not simultaneously
satisfy the equilibrium condition of equation (32) because
the prior results did not consider molecules that both adsorb
and desorb during a single time step. We address them with
the following conceptual scheme: we label all molecules as
being solution-phase or surface-bound at time 0, the system
evolves over one time step, and we then use the labels to
see how many molecules had a net adsorption transition by
time At. We solve this problem in appendix A. The answer,

(35)
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equation (A.12), represents the model adsorbed molecules at
the end of a time step. Meanwhile, the expectation simulated
adsorbed molecules for one time step (see figure 4(b) and
equation (9)) is

0

O (x,1)dx = P,——

NGz

Equating these amounts and solving for P, yields the
adsorption probability,

K'A2m[cy — ¢ — czecferfc(cl) + cleC§erfc(cz)]

adsorbed amount = P, f

—00

. (36)

P, (37)
ciez (2 —c)
o - TR
cg=— (38)
V2
/ [ 12 2k’
HK—. (39)

C) =
V2
Figure 5(c) shows this adsorption probability and the
corresponding desorption probability (from equation (32))
for different «’ and k' values. As before, (i) the adsorption
probability approaches equation (1) as «’ is reduced to zero,
(ii) equation (1) simulates adsorption too quickly with larger
«’ values and (iii) " values that exceed some cut-off, which
now depends on k/, cannot be simulated quantitatively with
our simulator design because adsorption probabilities cannot
exceed 1. In the limit that «” is reduced to zero, P, approaches
its value for irreversible desorption (equation (22)), as one
would expect. In contrast though, P, does not approach
the irreversible adsorption probability (equation (21)) as K’
is reduced to zero. This is because the concentration profile
remains well mixed for the reversible adsorption case, even
as k' is reduced toward zero, which is a consequence of
the fact that the reversible adsorption steady state is an
equilibrium state (as &’ is reduced toward zero, the adsorption
equilibrium constant and the adsorbed concentration increase
toward infinity); in contrast, the concentration profile is sloped
for the irreversible adsorption case.

4.4. Algorithm 1V: irreversible transmission

The partially transmitting system (figure 1(b)), with
irreversible transmission from the front face to the back face
(kr > 0and kg = 0), is essentially identical to the irreversible
adsorption system. Its steady-state concentration profile is

C (x) = Co (%x + 1) , (40)

where C,o represents the concentration at the front of the
surface and is used if x > 0, and C_y represents the
concentration at the back of the surface and is used if x < 0.
As we found before, our simulation design cannot simulate
concentration profiles exactly for steady-state irreversible
transmission, but it can achieve accurate concentrations on
each side of the surface; figure 5(a) shows the transmission
probability as a function of the transmission coefficient, and
equations (20) and (21) are polynomial fits to the relationship
between P; and k .

The question remains where the simulator should place
transmitted molecules. It can, of course, place them at

the backside of the surface, although this ignores diffusion
occurring between transmission and the end of the time step.
A better algorithm variant accounts for this diffusion using
the probability density given in equation (25). Whereas
this density was inexact before, it is exact now because a
steady-state irreversibly transmitting surface acts as a constant
molecular source to the region with x < 0. In yet a third
algorithm variant, the simulator does not move transmitted
molecules, but simply leaves them where they ended up after
step 1 of the simulation process. The resulting probability
density (which can be approximated with the x < 0 portion of
equation (17)) is very similar to the exact result. This is the
most computationally efficient variant.

4.5. Algorithm V: reversible transmission

Finally, consider the reversible partially transmitting system
(kr > 0and kg > 0). From equations (3) and (5), the model
steady state is well mixed on each side of the surface but is
likely discontinuous at the surface,

C >0
cx = {cio §< 0}’ @1
C”_°° _ B (42)
C—oc KF.

This steady state is an equilibrium state, for which each side of
equation (42) represents the chemical partition coefficient [5].
Physically, the concentration discontinuity can be maintained
actively, such as by trans-membrane molecular pumps, or
passively, such as by chemical partitioning between different
solvents.

Our simulator design can simulate reversible transmission
exactly under equilibrium conditions. The starting
concentration profile (equation (41)) diffuses to

0 X Coo f —X
2 ouDar 2 T ouDar
where the first term represents molecules that diffuse from
x < 0 and the second term represents molecules that diffuse
from x > 0. In step 2, the simulator transmits molecules
that diffused across the surface with probabilities P, and P, 5
for the front and back faces, respectively. The number of
molecules that the simulator transmits from the front to the
back is the integral of the second term of equation (43) from
—oo to 0 (see equation (36)), times P,r. This result, and the
analogous one for transmission the other way, is

DAt
amount from front = P, pCooy/ ——
b4

CcO(x,1) =

(43)

(44)
| DAt
amount from back = P,gC_q0,/ ——. 45)
b4

These are equal at steady state.
equation (42) yields

Combining them with

P K
28 _ T8 (46)
Pir kF
To return the concentration profile to the steady state by the
end of the time step, the simulator can displace transmitted
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molecules away from the surface according to equation (25)
or just leave them where they ended up after step 1. These
produce the same steady-state concentration profiles and so
are equally accurate at steady state, although the latter variant
is more computationally efficient.

We find P,r much as we found P, for the reversible
adsorption problem. Now, we solve: given an initially well-
mixed concentration profile for x > 0, no concentration for x
< 0, and a reversible partially transmitting boundary, what is
the total number of molecules in the region x < 0 at time A#?
Appendix B presents the result. The solution, equation (B.12),
represents the number of molecules that the simulator should
transmit over one time step. We equate it to equation (44),
which represents the number that the simulator does transmit,
and solve for the transmission probabilities. They are

P = Kk 2kp +K5)
= (K +Kp)? BTOE
_ /% + /%eZ(K}ﬁK}-)zerfC[\/z(K,B +K})]} )
K/
P = P,FK—?. (48)

F
Figure 5(d) presents these probabilities.

The results are familiar: transmission probabilities
approach equation (1) as kfr  and kp’ approach zero;
equation (1) simulates transmission too quickly with larger
kr’ and kg’ values, and, in most cases, a simulator can only
quantitatively simulate transmission up to finite k r’ and « p’
values. The exception to the last result occurs if k ' = kg’ (the
bold dashed line in figure 5()), which is typical for passive
membranes.

5. Algorithm verification and comparison

All of the algorithms presented above rest on firm theoretical
foundations that ensure high accuracy for steady-state systems.
Here, we investigate their accuracy away from steady state.
Figure 6 shows results from several algorithm tests, run
with the Smoldyn simulator. Each test started with 20 000
molecules that were well mixed within box-shaped regions
and that had 5 um? s~! diffusion coefficients (see figure 1;
x extended from O to 2 um and y and z were each 1 pum
wide). These are reasonably typical parameters for proteins in
bacteria [17, 43]. Initially, no molecules were adsorbed to a
surface at x = 0 and there were no molecules in the region x <
0. Simulation time steps were 1 ms, which is larger than the
0.25 pus to 0.1 ms time steps that modelers typically use [14,
25, 29-31], both because this tested the algorithms where they
are likely to be weakest and because a goal of this work is to
enable accurate simulations with longer time steps. Depending
on the specific test, molecules interacted with the surface
with irreversible adsorption, reversible adsorption or reversible
transmission. These tests used either ‘fast’ rates, with the
maximum possible adsorption or transmission coefficients that
the time step allowed, or ‘slow’ rates, with coefficients that
led to adsorption or transmission probabilities to be about 0.1
(the figure 6 caption presents the coefficients). Figure 6(a)
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Figure 6. Algorithm tests for systems that started with well-mixed
states. Dots represent stochastic simulation results and lines
represent predictions for the corresponding model systems. (a)
Number of molecules adsorbed to a surface or transmitted through
the surface, as appropriate, in tests of irreversible adsorption (IA,
circles), reversible adsorption (RA, triangles) or reversible
transmission (RT, diamonds). Upper black points are for ‘fast’ rates:
k& = 85.9 um s~! for irreversible and reversible adsorption (P, = 1),
k =276 s7! for reversible adsorption (P; = 0.128) and k y =k =
5045 pum s~! for reversible transmission (P, = P,z ~ 1). Lower
red points are for ‘slow’ rates: k¥ = 4.23 um s~! for irreversible and
reversible adsorption (P, = 0.1), k = 28 s~! for reversible
adsorption (P; = 0.026), and k r = k3 = 4.36 um s~ for reversible
transmission (P, = P, = 0.1). Every third simulation data point is
shown for clarity. (b) Concentration profiles at several time points
for the irreversible adsorption test with the ‘fast’ rate. Black circles
represent time 0, red triangles represent time 1 ms (1 time step),
green diamonds represent time 10 ms and blue squares represent
time 100 ms. See supplementary information for details available at
stacks.iop.org/PhysBio/6/046015.

compares these stochastic simulation test results with exact
calculations, where the latter are

CooD | & [t [t
|:e D erfc (K —) + 2k, — — 1:| (49)
D nD

(Equation 3.37 of [16]) for irreversible adsorption, equation
(A.12) for reversible adsorption and equation (B.12) for
reversible transmission. In all cases, the simulation results
agreed essentially perfectly with the model ones. This is true
at all time points, despite the fact that the system was far
from steady state for the initial ones. Additional tests (not
shown) performed equally well for smaller adsorption and
transmission coefficients.

Ca (1) =
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Figure 6(b) shows several snapshots of molecular spatial
distributions from the irreversible adsorption test that used the
‘fast’ rate. A comparison with the model profiles,

X

KX I(2T
—expp* D erfc +x
P (2\/ Dt ) :|

(equation 3.35 of [16]), again showed excellent agreement
at all time points. As before, additional tests that used
smaller adsorption coefficients performed equally well. Note
that even though the system shown in figure 6(b) was well
mixed initially, its concentration profile evolved rapidly in the
immediate vicinity of the surface (the rms step length for this
simulation was 0.1 um) toward a steady-state profile; this is
the reason why we developed our algorithms for steady-state
systems.

These tests indicate that our irreversible adsorption,
reversible adsorption and reversible transmission algorithms
are accurate not only for steady-state systems, but also for
those away from steady state. Furthermore, they are accurate
over the entire range of adsorption or transmission coefficients
accessible for a given simulation time step. Considering the
other two algorithms, the irreversible desorption probability
presented above (equation (22)) is accurate for all systems
because it does not rely on the steady-state assumption, and
the irreversible transmission algorithm is essentially identical
to the irreversible adsorption algorithm, which we just verified.

In contrast, simulations based on equation (1) performed
less well. First, they could not be tested with the ‘fast’ set
of adsorption or transmission coefficients because equation
(1) does support such large coefficients (equation (1) only
allows «’ values up to 0.399, whereas they can reach 0.859 for
our irreversible adsorption algorithm; see figure 5(a)). For the
‘slow’ set of coefficients, adsorption was about 6% too fast and
partial transmission about 10% too fast, at all time points. With
larger adsorption or transmission coefficients, use of equation
(1) led simulations to irreversibly adsorb molecules up to
2.1 times too fast, or to reversibly adsorb or transmit molecules
with even larger errors (the maximum errors depended on the
rates of the reverse processes).

X
C(x,1) = C| erfc
i
t

D

(50)

6. Simulating unbounded diffusion with partial
absorption

Our final algorithm, which applies to all spatial simulation
methods, builds on the irreversible adsorption algorithm. It
addresses the following situation: suppose a modeler wants
to investigate biochemical interactions in unbounded space,
such as between extracellular pheromones and cell-surface
receptors, but wants to limit the simulated spatial domain
for computational efficiency [2]. The modeler needs to
know how much space to simulate explicitly and how to
treat its boundary. Clearly, the boundary should be neither
completely reflective, which would keep molecules from
diffusing away permanently, nor completely absorbing, which
would inaccurately represent those molecules that diffuse away
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and then return. We propose the intermediate solution that
the boundary should absorb molecules with the absorption
coefficient that causes the simulated concentrations to equal
those for the unbounded model system. We solve for this
absorption coefficient here.

We derive the absorption coefficient for three-dimensional
systems with stationary sources that emit molecules at constant
rates, without significant obstacles to diffusion and without
significant molecular turnover through reactions. We number
the sources with index j: source j is located at r; and emits
molecules with rate g;. For our unbounded model, the steady-
state molecular concentration at location r is [16]

Yo
J

47D |r—r;|
The flux at r is computed from the concentration gradient using
Fick’s law, as in equation (2),
r;)

Jn=y ot
Jj

47 |r—rj|3'

C(r)= D

(52)

The Robin boundary (equation (4)) relates the flux into the
surface with the concentration at the surface, which we
generalize to more than one dimension to yield

J@O) =« @ C@n(), (33)

where fi(r) is the unit outward normal for the surface at r; also,
note that «, the absorption coefficient, is now made a function
of r. We equate the fluxes in equations (52) and (53) and solve
for the absorption coefficient,

K (r) = DZ 9;(r=r) Am Z = (54)
|r—rj| |r r/|

Thus, if a surface absorbs molecules w1th this absorption
coefficient, the concentration profile will be the same as if
the system were unbounded.

Figure 7 illustrates this algorithm. Using the Smoldyn
program, I defined two molecular sources and bounded the
system with a cube that was 5 um on each side. Each cube
face was tiled with 25 panels, each 1 um square. Each of these
panels absorbed molecules according to the coefficient given
in equation (54), calculated with r set to the panel center. The
upper portion of figure 7 shows a slice through the middle of
the system and the lower portion compares average steady-
state molecular concentrations in a band through the system
with model concentrations from equation (51). The simulated
and model systems agree well.

7. Discussion and conclusions

Erban and Chapman’s adsorption algorithm for particle-based
simulators [18], based on equation (1), is simple to understand,
easy to implement and fast to simulate. These qualities make
it ideal for ‘quick-and-dirty’ simulations. However, it is only
quantitatively accurate if (i) the modeled system is kept well
mixed, even in the immediate vicinity of adsorbing surfaces,
or (ii) simulation time steps or adsorption coefficients are very
small (more precisely, k' << (27)~/?). We built on their
result here with algorithms that yield more accurate adsorbed
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Figure 7. Simulation of effective unbounded diffusion with a
partially absorbing boundary. (A) a 0.5 um thick slice, taken
parallel to the x,y-plane, through the middle of a cubical-simulated
system. Large dots represent molecular emitters, small dots
represent molecules and the gray band across the system (5 um long
by 0.5 um wide and thick) represents the volume in which
molecules were counted. Each face of the system is assembled from
a grid of 25 panels, each with an absorption coefficient from
equation (54); panels with larger absorption coefficients are depicted
with thicker boundary lines. (B) Dots represent simulated molecule
concentrations, measured along the gray band from panel A, at
steady state and averaged over 1000 time steps. Dashed lines
represent theoretical concentrations from each individual source,
along the gray band, for the unbounded model system. The solid
line represents the sum of the dashed lines, which is the total
theoretical concentration for the unbounded model system. See
supplementary information for details available at
stacks.iop.org/PhysBio/6/046015.

concentrations and solution-phase concentration distributions,
and also with new algorithms for desorption and partial
transmission. We derived these algorithms for steady-state
systems, but also showed that they are very accurate for
systems that start well mixed. They require essentially the
same computational effort as Erban and Chapman’s method at
each simulation time step but may enable faster simulations
overall because they maintain their accuracy as time steps are
made longer.

This work shares two important themes with our prior
work on simulating bimolecular reactions [3]. First, we
designed both sets of algorithms to yield correct rates when
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the systems are at steady state rather than when they are
well mixed. We did this because the adsorption and reaction
processes we wished to model cause systems to evolve rapidly
away from well-mixed states (or other initial states) and toward
steady states. As a result, portions of these systems close to
adsorbing surfaces or reactive molecules, which are the regions
that determine adsorption and reaction rates, spend nearly all
of their time close to steady state. As we saw above and in prior
work [3], steady-state investigations do not lead to the simple
analytical equations that other researchers found using well-
mixed assumptions [18, 22, 41], but are nevertheless necessary
for accurate simulations. Secondly, we found that reversible
interactions need to be considered as special cases, rather
than as independent forward and reverse processes. We saw
that here for reversible adsorption and reversible transmission,
and previously for reversible bimolecular chemical reactions
[1, 3]. Treating the processes as independent forward and
reverse processes leads to incorrect transition rates and, more
importantly, incorrect equilibrium constants.

The algorithms presented here will, hopefully, make
it easier for researchers to quantify biological adsorption,
desorption and transmission rates by using computational
modeling.  This will help address the current paucity
of quantitative data for these interactions. = Combining
these algorithms with the better data should also enable
particle-based biological simulations that are faster and
more accurate than current ones. These investigations
may help scientists better understand dynamic protein
localization, intracellular molecular gradients and related
topics. To promote these research directions, all algorithms
presented here are implemented in a code library that
is supplied with the supplementary information (available
at stacks.iop.org/PhysBio/6/046015), and in the general-
purpose Smoldyn biochemical simulator (available at
http://www.smoldyn.org).

8. Supplementary information

The supplementary information for this paper (available at
stacks.iop.org/PhysBio/6/046015) includes (i) details about
the simulation emulator, (ii) tables that relate adsorption
coefficients to adsorption probabilities for irreversible and
reversible adsorption, (iii) details about stochastic simulations
used in figures 5(a), 6 and 7, and (iv) C source code that
converts between molecule-surface interaction coefficients
and their simulation probabilities, and also includes the
simulation emulator, and (v) documentation for the source
code.
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Appendix A.

This section solves the following problem. In the
adsorption/desorption model system, defined by equations
(3) and (4), suppose that the solution is well mixed with
concentration C, and there are no adsorbed molecules at time
0. What is the adsorbed concentration at time #?

We Laplace transform equations (3) and (4) to yield

s
—C(x,O)+ZC(x,z)=D8L);’Z) (A1)
0x
—C, 0 +2C, () = Dw
* x=0
=kC(0,2) —kC, (2). (A.2)

A ‘hat’ symbol denotes a Laplace transformed function and
z is the Laplace conjugate of the time (we use z instead of
s, which is conventional, because we use s for the rms step
length). In addition, three boundary conditions are

C(x,0) = Cs (A.3)
C,(0)=0 (A4)

. Coo

C (00,2) = " (A.5)

Substitution of equation (A.3) into equation (A.1), followed by
solution of the differential equation, yields the general solution

A C Z Z
Cx,2)="2 +aex\/g+be_x\/%,
Z
where a and b are constants of integration. Using equation
(A.5), a equals 0. Meanwhile, the first and last portions of
equation (A.2), with substitution from equation (A.4), yield

(A.6)

C.(2) = ZK?C ©0.2). (A7)

Combination with equation (A.6) simplifies the result to

(59

z
Using the middle and last portions of equation (A.2), along
with substitutions from equations (A.6) and (A.8), yields

A K
Ca (Z) =

7 (A.8)

C C
Db | (= ab) =k (=2 4b). (A9
D Z z+k Z
We solve this for b to find
Cook
=—— (A.10)
(z+k)~/Dz+kz

This result is substituted into equations (A.6) and (A.8) to yield
the Laplace transformed solution for the surface concentration,
Cy Dk

Colz) = :
© z[D (z+k) +x+/Dz]

(A.11)
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Using the method of partial fractions, equation (A.11) inverse
Laplace transforms to yield the surface concentration as a
function of time

2 2
Cookt [—cl + ¢y, — cpefierfe () + cr1e©erfc (cz)]

Ca (t) = Cci1C2 (C2 - Cl)

(A.12)

i — /K2 — 4Dk
_ k= ~/k?—4Dk A3
1 24D Vi ( :

k + vk — 4Dk
_ K+ k2 — 4Dk A.14
() JD \/;, ( )

where c¢; and ¢, are variables that the partial fraction
expansion introduced, but which do not have a clear
physical interpretation. This solution applies for all physically
reasonable (i.e. non-negative) values of the parameters «, k,
D and ¢. However, it may not be particularly convenient for
many parameter choices because the constants c¢; and ¢, are
complex for many reasonable values of k and k. Note that the
solution-phase concentration profile can be found from results
presented in section 12.4.11Liii of [12].

Appendix B.

This section is very similar to appendix A. In the partial
transmission model system, defined by equations (3) and (5),
suppose that the concentration is O for all x < 0 and is C, for
all x > 0 at time 0. How much substance is in the x < 0 portion
of the system at time #?

We Laplace transform equations (3) and (5) to yield

A 92C X,
— Cp (5, 0) 4285 (v, = DB gy
ox
A 92C X,
— Cr (x,0)+2Cr (x,2) = D# (B.2)
0x
DaCB (x,2) _ DaéF (x,2)
0x 0x
x=—0 x=+0
=krCr (0,2) —xkpCp (0,2). (B.3)

Cp(x,t) and Cp(x,t), along with their Laplace transformed
versions, are the concentration profiles on the back and front
sides of the surface, respectively. Some additional boundary
conditions are

Cp(x,00=0 (B.4)
Cr(x,0) =Cy (B.5)
Cp(—00,2) =0 (B.6)
Cr (00, 2) = Czﬁ (B.7)

The first two of these boundary conditions simplify the
differential equations, equations (B.1) and (B.2). They are
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then solved (see equation (A.6)) and simplified further with
the latter two boundary conditions to yield

Cp(x,2) = aex\/% (B.8)

) c z
Cr(x,7) = == +he—V5, (B.9)
Z

In these equations, a and b are constants of integration. These
general solutions are combined with the Robin boundary
condition in equation (B.3) and simplified to yield solutions
for a and b,

c
a=—b= ookF . (B.10)
Z (KB +Kkp++/Dz

Substitution of equation (B.10) into equations (B.8) and (B.9)
yields the Laplace transforms of the concentration profiles.
The inverse Laplace transform, which would yield the time-
dependent concentration profiles, appears to be intractable.
Instead, we work toward the desired solution by integrating
the concentration profile on the backside of the surface to
find the total number of transmitted molecules. Its Laplace
transform is

0
I (2) = f Cook F \/5

Cp(x,2)dx =
o 2P (kg +kp ++/Dz

. (B.11)

This inverse Laplace transforms to yield the desired solution

M(l‘) _ COOKF\/D_I

B (kB +KF)2 ﬁ

|7 D [T D (eprep)s (kg +kF) N1

This solution applies to all physically reasonable values of the
parameters (kg > 0,kp > 0,7 > 0 and D > 0).

{Z(KB +Kr)

Glossary

Adsorption coefficient. The proportionality constant in the
Robin boundary condition that expresses the rate at which
solution-phase molecules that are adjacent to a surface adsorb
to the surface. It is defined here by « in equation (4) and has
units of length/time. Other authors frequently define the term
differently, depending on their adsorption model.

Adsorption probability. The probability with which
molecules that diffused across a surface during the prior
simulation time step adsorb to the surface.

Concentration profile. The expectation molecular
concentration as a function of the distance away from the
surface. It is a distribution function.

Desorption rate constant. The probability with which a
molecule desorbs from a surface during a simulation time
step.

Exact algorithm.  An algorithm for which all of its results
are theoretically indistinguishable from those of the
underlying model system.

Farticle-based simulation. A simulation method in which
individual molecules of interest are represented with
point-like particles in continuous space. This method
accounts for stochastic and spatial detail.

Permeability coefficient. The proportionality constant in the
Robin boundary condition that expresses the rate at which
solution-phase molecules that are adjacent to a surface
diffuse through the surface. It is defined here by « y and k
in equation (5) and has units of length/time.

Robin boundary condition. A weighted combination of
Dirichlet and Neumann boundary conditions in which the
gradient of a function at a surface is directly proportional to
its value at the surface. This is also called the radiation
boundary condition.

Root mean square (rms) step length. The average length of
a step for a molecule in a Brownian dynamics simulation.
This is often a characteristic length for the simulation
algorithms.

Steady-state system. A system in which expectation
molecular concentrations are constant with respect to time,
although there may be constant molecular fluxes.

Well-mixed system. A system in which the expectation
solution-phase molecular concentration is uniform
throughout space.
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