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Despite recent advances in single-molecule measure-
ments, nearly all of our knowledge of the microscopic struc-
ture of molecules arises from measurements of bulk samples.
As a result, part of the art of experimental chemistry is in
figuring out properties of individual molecules, which are on
the scale of nanometers, based on measurements with char-
acteristic size scales that are many orders of magnitude larger.
Conversely, chemical engineers may need to predict the be-
havior of bulk samples from known parameters for individual
molecules. In some cases, there is a simple correspondence
between bulk and microscopic properties. For example, if we
experimentally determine that a sample of pure carbon di-
oxide has two moles of atomic oxygen for each mole of car-
bon, we can immediately deduce that each individual carbon
dioxide molecule has two atoms of oxygen for each atom of
carbon. In contrast, absorption spectroscopy does not scale
so easily.

Suppose we are interested in the electronic properties of
alkenes. On recording the ultraviolet spectrum of 1-octene
dissolved in n-heptane, we see a peak at 177 nm with an ab-
sorption coefficient of 13,000 M�1 cm�1 (1). Dividing by
Avogadro’s number and changing units seems to imply that
the absorption cross-section of each 1-octene molecule is 2.2
× 10�3 nm2. However, this is wrong. Using a classical pic-
ture, absorption of light occurs by the excitation of electron
cloud fluctuations along the direction of the molecular tran-
sition dipole moment by the oscillating electric field of the
light wave (2). Absorption is maximal when the transition
dipole moment is parallel to the light polarization and is equal
to zero when the vectors are perpendicular. While it is cor-
rect that the absorption cross section of 1-octene is 2.2 × 10�3

nm2 per molecule on average, the actual value for an indi-
vidual molecule varies from 0 to 6.6 × 10�3 nm2, depending
on the orientation of the molecule relative to the light polar-
ization. The average absorption cross-section is exactly one
third of the maximum value, a correction factor that is well
known, but whose quantitative derivation is neither obvious
nor typically presented in textbooks. This article presents the
mathematics behind this and other rotational averages to sat-
isfy the curiosity of mathematically-inclined students and be-
cause new experiments may require rotational averages that
are not readily available, making additional derivations nec-
essary.

Rotational-averaging methods are used routinely for
quantitative single- or multiphoton spectroscopy (3). The
former includes simple absorption and emission spectroscopy
and the latter includes fluorescence (4), Raman (5),

photoselection (6), dichroism (7), pump-probe, and several
other conventional and laser spectroscopy methods. Rota-
tional averaging has also been useful for Stark effect (8–10)
and Zeeman effect spectroscopy. While rotational averaging
is rare outside the field of spectroscopy, the method is gen-
eral and could be used in other branches of physical chemis-
try. For example, it could be used to quantify molecular
alignment in a rheology or surface science experiment.

Before starting to write equations, it is helpful to define
the problem more carefully. The goal is to calculate experi-
mental observables, or other properties of a bulk sample, in
terms of microscopic molecular parameters. This requires a
summation of experimental responses over all molecules in
the sample, followed by division by the number of molecules
to yield results on a per molecule basis. Alternatively, it is
equivalent and easier to calculate a statistical average over all
orientations of a single molecule. While it is typically valid,
an assumption is being made here, which is that enough mol-
ecules are detected, or the measurement timescale is suffi-
ciently long, that random molecular fluctuations do not
appear in the experimental result. At the end, the calculated
equation can be inverted to yield molecular parameters in
terms of experimental results.

Isotropic Averages

Some axes are required to express a molecule’s orienta-
tion, as shown in Figure 1. Following the standard conven-
tion (4), X, Y, and Z are the Cartesian axes in the laboratory
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Figure 1. Laboratory and molecular coordinate systems: X, Y, and
Z are the laboratory reference frame axes, and x, y, and z are the
molecule reference frame axes. For clarity, only z is shown; x and
y are perpendicular to each other and to z, although their exact
positions are not important. θ, φ, and χ are the Euler angles that
relate the coordinate systems. A rotational average integrates over
the full ranges of θ, φ, and χ to account for the range of molecule
orientations in a bulk sample.
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reference frame (also called the space-fixed reference frame)
used for specifying orientations of polarizers, detectors, mo-
lecular beams, and other laboratory apparatus. For a molecule
(sometimes called the body-fixed reference frame), the Carte-
sian axes are x, y, and z, which are used for dipole moments,
polarizabilities, transition dipoles, symmetry axes, and other
molecular properties. The molecule’s orientation in the labo-
ratory is given by the Euler angles θ, φ, and χ, where these
angles express the rotation of the molecular axes with respect
to the laboratory coordinate system (4,11,12). θ and φ are
the familiar angles from spherical coordinates that give the
direction of the molecule’s z axis in the laboratory frame: θ is
the angle between Z and z, and φ is the angle between X and
the projection of z on the XY plane. The third Euler angle, χ,
expresses the rotation of the molecule about its z axis.

When a molecule interacts with the experimental sys-
tem, the result (e.g., an absorption intensity) typically de-
pends upon the molecule’s orientation and may be given
generally by f (θ, φ, χ). The bulk response, scaled to a per
molecule basis, is the value of f (θ, φ, χ) averaged uniformly
over all orientations:
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This equation is taken as the definition of a rotational aver-
age for an isotropic sample, as well as the definition of the
brackets notation. To demonstrate a rotational average using
a trivial example, suppose f (θ, φ, χ) is a measurement of the
mass of a molecule, given as m, and we want to calculate the
rotationally averaged mass. As f (θ, φ, χ) is independent of
the molecule’s orientation in this case, it factors out of the
integral and it is found that the average is just equal to the
mass (i.e., �m� = m). The interpretation is that the average
mass of a molecule in an isotropically oriented sample is the
same as the mass of a molecule in some specific orientation,
which is obviously true. Much more generally, all rotational
averaging for isotropic samples can be carried out with a suit-
able choice of  f (θ, φ, χ) and eq 1.

It is worth noting some basic properties of eq 1. In a
manner similar to the calculation of an average mass, it can
be seen that this definition of rotational averaging is normal-
ized so that �1� = 1. Secondly, rotational averaging is a linear
operation, for example:

+ = +1 1 2 2 1 1 2 2k f k f k f k f (2)

Finally, the only angles that appear in eq 1 are relative angles
between the laboratory and molecular coordinate systems.
This gives us the freedom to define both sets of axes as de-
sired, often allowing for a relatively simple analysis.

Energy of Immobilized Dipoles in a Uniform Field
 Suppose we want to calculate the potential energy of a

sample of molecules in an externally applied uniform elec-
tric field. Each molecule has a dipole moment vector p and
is immobilized so it cannot rotate, as one might find for mol-
ecules suspended in a polymer matrix. Considering a specific
molecule, p is its dipole moment expressed in the molecule
coordinate system; the same vector, for the same molecule,
is called pL when coordinates for the laboratory reference

frame are used. The two representations are related by the
equation pL = pΦΦΦΦΦ, where ΦΦΦΦΦ, called the direction cosine ma-
trix, contains information about the molecule’s orientation
in the laboratory. (To be rigorous, p and pL are being used as
row vectors because this will turn out to be more convenient
than column vectors). In terms of the Euler angles that de-
fine the relative rotation of the two coordinate systems, the
direction cosine matrix is (4, 11):
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In the former matrix, “c” is used for cosine and “s” is used
for sine. The ΦFi coefficients in the latter matrix, using F as
an index for X, Y, and Z and i as an index for x, y, and z, are
nothing more than a convenient notation for elements of the
ΦΦΦΦΦ matrix. Thus, each ΦFi term is a function of θ, φ, and χ.
A general property of rotation matrices, such as this one, is
that they are unitary (all eigenvalues are equal to 1). As all
the coefficients in ΦΦΦΦΦ  are also real, a useful identity is that
ΦΦΦΦΦ TΦΦΦΦΦ  is the identity matrix, where the symbol T denotes the
matrix transpose.

For a single molecule, the potential energy from electric
field interactions is U = �pL�E, where E is the electric field
(13). The desired equation is the rotational average of this,
to yield the average potential energy per molecule in a bulk
sample. For convenience, the laboratory coordinate system
is defined so that the Z axis is parallel to the electric field,
allowing the field to be written as the scalar E times Ẑ, where
Ẑ is a unit vector on the Z axis. The average is:

avU E= − ⋅ = − ⋅E Zp
L

p
L

ˆ (4)

The term within brackets, including the brackets, is called
the sample polarization and denoted P. It is converted to the
laboratory coordinate system and then solved using eq 3:
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The final equality follows by direct integration of the relevant
ΦΦΦΦΦ coefficients using eqs 1 and 3, by an analysis of the sym-
metry of the underlying sines and cosines, or by looking up
the result in List 1. Because the polarization is zero, the an-
swer to our problem is that the average potential energy of
randomly oriented dipoles in a uniform field is also zero. While
this result could have been deduced from symmetry, the deri-
vation process and the intermediate equations are central as-
pects of rotational averaging. They are repeated many times
in subsequent examples, although with decreasing detail.

Absorption of Light
As mentioned in the introduction, the classical picture

of the absorption of light is that electronic fluctuations in
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the molecule along the transition dipole moment, m, are ex-
cited by the oscillating electric field of a light wave (2), whose
direction is now given as ê. The transition dipole moment
can be calculated from first principles using quantum me-
chanics. However, it is not directly measurable; instead one
measures the absorption coefficient of the transition as a func-
tion of frequency over the entire absorption band, which is
then linked to theory through its integral. For a single mol-
ecule, the integral is (12, 14),

∫ ( ) ⋅( )d =
2

c ln
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0

2

10
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where ε(ν) is the absorption coefficient as a function of the
frequency, NA is Avogadro’s number, ε0 is the vacuum per-
mittivity, h is Planck’s constant, and c is the speed of light in
vacuum. As before, the ‘L’ subscript on mL indicates that this
equation uses the laboratory reference frame expression of
the transition dipole moment vector. From the dot product
in the equation, it can be seen that absorption is maximal
for molecules oriented so that mL is parallel or antiparallel
to ê and is zero for those with mL perpendicular to ê. For
convenience, the Z axis is oriented parallel to the light po-
larization. The rotationally averaged integrated absorption co-
efficient, which is the experimental observable, is expressed
by putting brackets around both sides of eq 6. On the right
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List 1. Rotational Averages of Direction Cosines

    NOTE: ΦFi terms are direction cosine matrix elements where the former index represents a laboratory frame axis, equal to X, Y, or Z,
and the latter represents a molecule frame axis, equal to x, y, or z. Where an equation includes two laboratory frame axes, F and G,
it is assumed that they are not the same axis. The brackets represent a rotational average as defined by eq 1. In several equations,
ellipses indicate that a series includes all products of Kronecker delta functions with distinct permutations of the indices; the total
number of terms in the expression is listed. See the Appendix for the derivation methods of the equations shown here. Note that n!! =
n(n – 2)(n – 4)…(2 or 1).
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side of the equation, the constants factor out, leaving a re-
sult that is simplified:
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The �ΦZi ΦZj� factor can be solved by integration of the sines
and cosines in eq 3 or the solution can be found in List 1.
The δij factor is a Kronecker delta function that, by defini-
tion, is equal to 1 if i = j or 0 if i ≠ j. In the final equality, it
is recognized that the sum of the squared components of m
is equal to the vector magnitude squared, leading to a
notationally clean result. This tidiness is a consequence of
the fact that the molecular axes were chosen by us rather than
being an intrinsic property of the molecule, so they must be-
come irrelevant at the end of the calculation. Comparison of
the result in eq 7 with the last term of eq 6 shows that an
isotropic bulk sample absorbs one third as much light as a

sample of molecules that are aligned parallel to the light po-
larization, as mentioned in the introduction. This indicates
that most molecules in an isotropic sample are in orienta-
tions that have poor overlap between their transition dipole
moments and an external axis.

Fluorescence
Fluorescence is a two photon process in which a mol-

ecule absorbs incident light with its absorption transition di-
pole moment, ma, and subsequently emits a photon from its
emission transition dipole moment, me. These transition di-
poles, including their magnitudes and relative orientations,
form another important link between experiment and quan-
tum mechanics, such as for studying intra- and intermolecu-
lar energy transfer. In the experiment, shown in Figure 2, a
fluorimeter excites an isotropic sample with light polarized
along the Z axis and detects emitted light using a polarizer
that transmits light polarized parallel to ê. The laboratory ref-
erence frame is defined so ê is in the XZ plane at angle α
away from Z. The absolute fluorescence intensity, integrated
over both the absorption and emission peaks, is essentially
just eq 6 written twice, once for absorption and once for emis-
sion, but with the product multiplied by the fluorescence
quantum yield (the fraction of excited molecules that emit a
photon). Brackets are placed around the whole works, lead-
ing to the rotationally averaged integrated fluorescence in-
tensity,
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,e m Z

2 2
a L (8)

where A is a proportionality constant equal to the products
of the prefactors from eq 6 and the quantum yield. The de-
tector polarization direction, ê, is expanded into its X axis
and Z axis components:
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In the last equality, I||, I×, and I⊥ are defined as the constant
A times the respective rotational averages given in the previ-
ous expression. It can also be seen that I|| is the fluorescence
intensity measured if the fluorimeter polarizations are paral-
lel (α = 0�) and I⊥ is the value if they are perpendicular (α =
90�). The averages for these terms are solved independently,
using more generic notation and the same overall method as
in the previous examples:
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Figure 2. Vectors and angles in fluorescence spectroscopy. The
sphere at the origin represents a sample molecule, including its
absorption and emission transition dipole moments, ma and me,
respectively. It is excited by Z-polarized light incident along the X
axis and fluoresces with a polarization that is parallel to the emis-
sion transition dipole moment. The ê component of this emitted light
is selected by a polarizer in the fluorimeter, shown with the grid
on the right side of the figure, leading to ê-polarized light that propa-
gates outward along the Y axis. The intensity of this beam is mea-
sured with the fluorimeter detector; after integrating the result over
excitation and emission frequencies, the detected intensities at mul-
tiple polarizer angles (α), can be used to quantify the molecular
parameters |ma|2|me|2 and γ, as described in the text.

me polarized
emitted light ê−polarized

detected light

mema

Z

X

Y

ê

γ

α

Z-polarized
excitation

beam

http://www.jce.divched.org/Journal/
http://www.jce.divched.org/Journal/Issues/2004/
http://www.jce.divched.org/


Research: Science and Education

www.JCE.DivCHED.org • Vol. 81 No. 6 June 2004 • Journal of Chemical Education 881

⋅( )L L
ˆr X r ⋅⋅( ) ⋅( ) =

=∑

ˆ ˆ

, , ,

Z s ZL

i j k l Xi Zj Zk Zl
i j k l

r r s s

2

0Φ Φ Φ Φ
(11)

∑ r r s si j k l
j k l,i, ,

⋅( )ˆr XL
2

ss Z

r s r s

L Xi Xj Zk Zl⋅( ) =

=
− ⋅( )

ˆ 2

2 2 22

15

Φ Φ Φ Φ

(12)

Because eq 11 is equal to zero, the cross-term in eq 9 drops
out, leaving only terms for the fluorescence intensity parallel
and perpendicular to the excitation. Thus, the fluorescence
intensity that is emitted at any polarization angle can be cal-
culated from only the values for I|| and I⊥. The corollary is
that no additional information can be learned by measuring
fluorescence at more than two polarization angles. Substitut-
ing the averages in eqs 10 and 12 into eq 9, the total fluores-
cence intensity is:
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Two trigonometric identities help simplify this result. The
former replaces each of the two dot products in eq 13 with
the product of the vector magnitudes and the cosine of the
angle between them: ma�me = |ma||me|cos γ. This angle, γ, is
a property of the molecules; it is the angle in a molecule be-
tween the absorption and emission transition dipole mo-
ments. The other identity confines the α dependence to only
one of the terms:

cos sin cos2 2 22
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While eq 14 is not obvious, it is fairly easy to verify. After
some algebra, eq 13 simplifies to:
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This equation is a concise solution of the desired result,
which is the rotationally averaged integrated fluorescence in-
tensity in terms of molecular parameters and the polarizer
angle. The process of absorbing a photon is the same for fluo-
rescence as for a simple absorption experiment, so the fluo-
rescence intensity is proportional to |ma|2, as in eq 7 in the
previous example. Although it is more subtle, the interac-
tions between molecular electron cloud fluctuations and the
radiation field during photon emission are equivalent, ex-
plaining the proportionality of eq 15 to |me|2. The product
of these squared transition dipole moments can be found in
a couple of ways, both of which serve to make eq 15 inde-
pendent of γ. Experimentally, the polarizer angle can be set
to α = 54.7�, called the magic angle, which fixes the second
term of eq 15 to zero and makes a fluorescence intensity mea-
surement directly proportional to |ma|2|me|2. Alternatively, if

I|| and I⊥ are available, eq 14 shows that (I|| + 2I⊥)�3 is equal
to the initial term of eq 15. A different rearrangement of eqs
14 and 15 yields γ, the angle between the transition dipole
moments, via a frequently used intermediate value called the
fluorescence anisotropy (4):

2

3
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The value of the anisotropy ranges from �1�5 to 2�5, for γ
angles from 90� to 0�, respectively, and is 0 if γ is the magic
angle.

The situation is often not this simple, owing to yet an-
other incidence of rotational averaging. In a gas or liquid
phase sample, rotational diffusion often provides significant
reorientation of a fluorescent molecule during the time be-
tween the absorption of a photon and the subsequent fluo-
rescent emission. In these cases, if γ is known from other
experiments, then I|| and I⊥ can yield the rotational diffu-
sion constant, a topic that is discussed at length in reference
(15).

The algebraic manipulations between eqs 13 and 15
could have been simplified. Rather than rearranging the re-
sult after rotational averaging, it is generally more convenient
to do so beforehand. If this were done, the identity in eq 14
would have been applied to eq 9 and the required rotational
averages would have been:
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2
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While these averages appear more complicated than the ones
used, they lead more directly to the simplified result. They
are also equal to simpler sums of Kronecker delta functions,
as seen in List 1.

Up to this point, we have been considering increasingly
complicated products of vectors in the molecule reference
frame with ones in the laboratory reference frame. In each
case, the additional experimental complexity led to more
mathematical complexity, but also to the ability to learn more
about the microscopic structure of the sample molecules. This
trend could be extended to higher-order multiphoton spec-
troscopy, using similar methods. Instead of continuing the
trend, we address the issue of how to rotationally average with
matrix properties.

Energy of Polarizable Molecules in a Field
The simplest electrostatic characterization of a molecule

is its total charge, which is a scalar quantity; the next level of
detail is its dipole moment, which is a vector; the next level
is its polarizability, which is a matrix; and higher levels of
detail are called hyperpolarizabilities, represented by higher
rank tensors. Here, we consider rotational averaging with a
matrix by calculating the average potential energy of a sample
of immobilized polarizable molecules in an externally applied
uniform electric field. ααααα is taken as a molecule’s polarizabil-
ity matrix and αααααL is the same matrix expressed in the labora-
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tory coordinate system, terms that are related with the coor-
dinate transformation αααααL = ΦΦΦΦΦTαΦαΦαΦαΦαΦ. The laboratory coordi-
nates are defined so the electric field, E, is along the Z axis.
From basic electrostatics (13), the potential energy of a single
molecule is U = �EαααααLE�2, which is placed in brackets to yield
the rotationally averaged energy:

avU
E

L= − = −
1

2 2

2

E E Z Z� L�ˆ ˆ (18)

The rotational average is:
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The notation “Tr” denotes the trace of a matrix (the sum of
the matrix coefficients along the main diagonal). Because the
trace of a matrix is also the sum of the matrix eigenvalues,
the result is once again independent of the choice of axes, as
it must be. Combining eq 19 with the terms that were left
off from eq 18 shows that the energy becomes more negative
with increasing polarizability and is proportional to the sum
of the polarizability eigenvalues. On a practical level, it is dif-
ficult to experimentally determine individual polarizability
eigenvalues, so a standard approximation is to assume that
the polarizability is the same on all axes of the molecules of
interest. In this approximation, the polarizability is reported
as the scalar α, where α =Tr ααααα�3.

Rotational Averages with Tensors
Higher rank tensors, such as hyperpolarizabilities, are

averaged in a similar manner as shown above for vectors and
matrices. However, one has to abandon the clean vector and
matrix notation, shown in bold face type, and resort entirely
to subscripts and indices. For example, the transformation
of the first hyperpolarizability tensor βββββ from the molecule
reference frame to the laboratory reference frame is:

L lmn ijk il jm kn
i j k

,
, ,
∑=β β Φ Φ Φ (20)

These equations become sufficiently cumbersome that the
summation symbol is often implied rather than being writ-
ten explicitly, a notational method called the Einstein sum-
mation convention (13).

Anisotropic Averages

There are many ways in which samples may become par-
tially oriented, such as photoselection, external fields, flow
gradients, or surface interactions. An example of
photoselection was actually considered previously in the fluo-
rescence example, although it was not interpreted that way.
In this alternate view, fluorescence is a simple one photon
emission process from an excited population of molecules,
where the excited population is the collection of molecules
that were selected by having a high overlap between their ab-
sorption transition dipole moments and the excitation beam
polarization.

A general treatment of anisotropic samples requires a
function that expresses the proportion of molecules in each
orientation, using Euler angles. This density function,
ρ(θ, φ, χ), is defined so that the fraction of molecules with
orientations that are within dθ, dφ, and dχ of the exact ori-
entation θ, φ, and χ is given by (8π2)�1ρ(θ, φ, χ)sinθdθdφdχ.
Because this is a fraction of the sample, it must integrate to
1. Referring back to eq 1, it can be seen that the integral
needed to normalize ρ(θ, φ, χ) is identical to the one that
defines the brackets notation, allowing this normalization
constraint to be written as �ρ� = 1. A second constraint on
ρ(θ, φ, χ) is that it must be nonnegative for all θ, φ, and χ
values, which also follows from the physical interpretation
of the density function. Using the density function as a
weighting factor, the rotational average of the generic mo-
lecular response function f (θ, φ, χ) now accounts for any
sample anisotropy:

    sin d d df fρ
π

θ φ χ ρ θ φ χ θ θ φ χ
πππ

= ( ) ( )∫∫∫
1

8 2 0

2

0

2

0
, , , ,      (21)

This anisotropic average uses the same definition of the brack-
ets notation that was given before. If ρ(θ, φ, χ) is equal to
the value 1 for all angles (which obeys the normalization con-
straint because �1� = 1), eq 21 simplifies to the isotropic av-
erage in eq 1. Thus, this equation should not be thought of
as the anisotropic version of eq 1, but as the complete equa-
tion for a rotational average, for both isotropic and anisotro-
pic samples.

Energy of Mobile Dipoles in an Electric Field:
Approximate Solution

It was shown in the first example that a uniform electric
field does not affect the potential energy of isotropically ori-
ented immobilized dipoles. Here, the same experiment is con-
sidered but with mobile dipoles, as in a gas or liquid, so that
they are able to become oriented in the field. As before, the
laboratory frame axes are defined so the electric field, E, is
parallel to the Z axis, the dipole moment of a molecule is p,
and the potential energy of a dipole in a field is U = �pL�E.
Because of thermal motion, the molecules are not all posi-
tioned in their lowest energy orientations, but have an equi-
librium density function that is given by the Boltzmann
distribution,

ρ θ φ χ( , , )) ∝ = ≈ +− ⋅
e eUβ β E

1
p

L ⋅Eβ Ẑp
L

(22)

where β is the Boltzmann factor, equal to (kBT )�1, kB is
Boltzmann’s constant, T is the absolute temperature, and E
is the magnitude of the electric field. The final equality is a
valid approximation when the potential energy of a sample
molecule in the electric field is small compared to its ther-
mal energy, which is the situation for most experiments (10).
Normalization with the constraint �ρ� = 1 and the average
in eq 5 shows that the normalization constant is simply equal
to 1 in this case, yielding the approximate density function:

( ) ≈ + ⋅Eρ θ φ χ β Z1, , ˆp
L (23)

As in the first example, the average energy is Uav = �EP. The
polarization, P, is found using the linearity property of a ro-
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tational average and some averages found previously in eqs 5
and 7:

  = ⋅P ẐZ Z Z
p( ) = ⋅( ) + ⋅( ) =ρ β βE Eˆ ˆ1
3

2

p
L

p
L

p
L (24)

Thus, the average potential energy is Uav = �βE2|p|2�3. As a
useful check on this result, it is worth considering the infi-
nite temperature limit, in which β is decreased to 0. The den-
sity function in eq 23 approaches isotropy, while the
polarization in eq 24 and the average potential energy ap-
proach zero, all of which are physically sensible and agree
with the results of the first example. In the opposite limit of
zero temperature, the large value of β makes the density func-
tion in eq 23 become negative for angles in which pL is anti-
parallel to Z. This is unrealistic and violates a restriction on
ρ(θ, φ, χ); it arises, of course, from the approximation made
in eq 22. Returning to typical temperatures, the negative value
of the rotationally averaged energy and its proportionality
with the square of the electric field are reminiscent of the
result for immobilized polarizable molecules. This is not co-
incidental; whereas, in the previous case the field polarized
the sample through the molecular polarizability, with a value
of Tr ααααα�3, in this case the field polarizes the sample through
molecular reorientation. Combining these results shows that
the orientational polarizability is β|p|2�3 for a sample of mo-
bile polar molecules. The sum of the two polarizability con-
tributions, multiplied by the constants NA�(3ε0), is called the
molar polarization; the sum is also a portion of the Debye
equation, which relates electric properties of molecules to the
electric field in matter (14).

Energy of Mobile Dipoles in an Electric Field:
Exact Solution

Because of the approximation in eq 22, the ensuing equa-
tions are necessarily approximate as well, becoming increas-
ingly inaccurate at low temperatures. Exact solutions for the
density function and polarization are derived in this example
using a somewhat different method of rotational averaging.
Using N as a normalization constant, the normalization con-
dition on the density function is:

=ρ N e1= ⋅Eβ Ẑp
L (25)

In an exact version of the method used in eq 22, this would
be expanded to an infinite series and averaged, term by term,
using the appropriate general equation from List 1; at the
end, the infinite series reverts to exponentials. An easier
method is to temporarily abandon the method of averaging
over direction cosines and instead express the rotational av-
erage as an integral, using the definition of the brackets in
eq 1. To simplify the analysis, the molecular z axis is defined
to be parallel to p and the product βEp is replaced by the
generic vector r, which has magnitude r = |r|:

r=
N

e
1

L e e

e

e

r

r

r

⋅ = =

=

=

∫∫∫

Z r ZΦ cos

cos

cos

sin d d d

s

θ

θπππ

θ

π
θ θ φ χ

1

8

1

2

2 0

2

0

2

0

iin dθ θ
π

0 2∫ =
−

=
−e e

r
r

r

r r sinh
(26)

The θ integral is solved using substitution, while the final
simplification uses the definition of a hyperbolic sine func-
tion. Equation 26 yields the normalization constant, so the
normalized density function is:

ρ = ⋅r
r

e L

sinh

ˆr Z (27)

The sample polarization is set up as in eq 24. The exponen-
tial dependence of ρ(θ, φ, χ) makes this another rotational
average over an exponential, which is simplified and then car-
ried out like the one in eq 26:

⋅( )eL
ˆ rr Z L e e

r
e e

r
r

r

r r r r⋅ − −= +( ) − −( )
= −

ˆ

cosh
sinh

Z 1

2

1

2
(28)

Finally, the parts are assembled: eq 28 includes an extra fac-
tor of βE because the first term in the equation is rL rather
than pL; also, the prefactor of eq 27, which normalizes ρ,
was not included in eq 28. The result is:

P r
r

= −p coth
1

(29)

This polarization is exact for all electric field strengths. More
importantly, it expresses the degree of sample orientation for
any system in which the potential energy of a molecule is
the product of a vector in the molecule reference frame with
a vector that represents an externally applied field. Because
of its generality, the term in parentheses in eq 29 is well
known and is called the Langevin function (14).

Conclusions

Experiments that are used to investigate vector or ma-
trix properties of molecules typically produce results that are
averages from a wide range of molecular orientations. To link
these experimental results to the underlying molecular prop-
erties, the rotational averaging has to be carried out math-
ematically as well. The averaging can be considered separately
for each experiment using eqs 1 or 21 for isotropic or aniso-
tropic samples, respectively. However, it is generally prefer-
able to separate this portion of the mathematics from the rest
of the analysis. The procedure for rotational averaging, re-
peated many times in this article, is straightforward. First,
an expression is written for the observable for one molecule,
with the molecular properties expressed as vectors or matri-
ces in the laboratory reference frame. If the sample is aniso-
tropic, the expression is multiplied by the density function,
ρ(θ, φ, χ), which is normalized with the equation �ρ� = 1.
The total expression is enclosed in brackets to indicate rota-
tional averaging, is simplified using the linearity property, and
can often be solved immediately with substitutions from eqs
5, 7, 10, 11, 12, 19, 26, and 28. For a more detailed treat-
ment or for other averages, the molecular properties are trans-
formed to the molecule reference frame by multiplying by
the direction cosine matrix, allowing the molecular proper-
ties to factor out of the average. The remaining average of
direction cosine matrix elements simplifies to a series of Kro-
necker delta functions, listed in List 1, which select products
of vector or matrix components of the molecular properties.
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Because the result is independent of the axes chosen, it al-
ways simplifies to a collection of vector magnitudes, dot prod-
ucts, matrix traces, or similar reduced forms. The final result
is an equation for the experimental response of a bulk sample
in terms of the microscopic parameters of individual mol-
ecules. If desired, the result can be inverted to solve for the
molecular parameters.
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Appendix

The equations shown in List 1 that include up to four
direction cosine matrix elements are well known and are pre-
sented in several references (1A, 2A). The others are likely to
have been derived previously as well, although I have been
unable to find references to them. There are no special tricks
to the derivation of these equations; instead, each one is found
by using eq 1 to integrate over the sines and cosines of the
direction cosine matrix elements given in eq 3. However,
some symmetry properties can be used to minimize the num-
ber of required integrals. One of these is that each average is

independent of which laboratory frame axes are chosen to
represent the indices F and G, so these are always taken to
be Z and X, respectively. Similarly, it is possible to always
assign the molecule reference frame index i to be equal to z,
and j to be either x or z. For example, the average of �ΦFiΦFj�
requires only two integrals: �Φ2

Zz� and �ΦZzΦZx�, where all
other index combinations are equal to the first case if i = j
and the second if i ≠ j. Using these symmetry properties, this
average can be simplified to:

Fi Fj Zz ij Zz Zx ij= + −( )12Φ Φ Φ Φ Φδ δ (30)

Other averages simplify in a similar manner, leading to the
products of delta functions seen in List 1. Despite this sim-
plification, the number of types of index combinations and
the number of required integrals still increase rapidly as more
direction cosine terms are included. It turns out that this is
the limiting factor to these derivations, rather than the inte-
grals themselves.

There are several methods of evaluating the integrals over
direction cosines. For small numbers of integrations, it is easi-
est to evaluate the integrals directly with eq 1 and
Mathematica software (3A). A more traditional method is to
change to a spherical basis (1A), which has the advantage of
making the integration trivial, although at the cost of tedious
coordinate transformations between representations. The
method chosen for the derivations in List 1 involved divid-
ing the table into two halves: the first half involves averages
that include only a single laboratory frame axis, while the
second half involves two laboratory frame axes. In the former
case, each direction cosine product can be reduced to the form
�Φa

ZxΦb
ZyΦc

Zz�, where a, b, and c are constant integers. With
substitutions from eq 3, the integral is:

  

ZxΦ a
Zy
b

Zz
c

a b c

Φ Φ =

−( ) ( )∫
1

8 2 0

2

0π
θ χ θ χ θ θ θ φ χ

π
sin cos sin sin cos sin d d d

22

0

0 0

21

4

ππ

π π

π
θ θ θ χ χ χ

∫∫

∫ ∫=
−( )a

a b c b asin cos d cos d+ +1 sin

   
(31)

Consideration of the signs of the θ products in the two quad-
rants over which it is integrated, and the χ products in the
four quadrants of that integral, shows that the result is al-
ways zero unless a, b, and c are all even values. Using a result
from the Handbook of Mathematical Sciences (4A), the non-
zero integrals for eq 31 simplify to beta functions, and then
to gamma functions:

ZxΦ a
Zy
b

Zz
c

a b c b a

a

Φ Φ

Γ

=

+ + + + +

=
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1

2
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+ +
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a b c
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3
2

(32)
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In this equation, it is assumed that a, b, and c are all even.
These gamma functions with half-integer arguments evalu-
ate to simple fractions (4A), leading to the first set of required
integrals. A similar analysis applies to integrals with two labo-
ratory frame axes. However, with these it is impossible to
avoid direction cosine matrix terms with sums or differences,
with the result that the solution is a lengthy sum of beta func-
tions,

Φ ΦXx
a

Xy
b´ ´
ΦΦ Φ Φ Φ

Β×

×

×

×

Xz
c

Zx
a

Zy
b

Zz
c

i
a

j
b a b a i

a b c c
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´
,

= −( )

+ + +

+ + −1

2
1

2
2

2π

++ + +

+ − − + + + +

i j

a b i j c i j

1
2

1
2

1
2

Β
´ ´

,
´

j

b

i

a ´´

==
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00

+ − + + +a b i j a1
2

Β
´

,
b i j´ + − + 1

2

(33)

The symmetry properties are that the integral is only equal
to eq 33 if all of the following sums are even: a + a′, b + b′, c
+ c′, a + b + c, and a′ + b′ + c′; otherwise the result is zero.

The terms in parentheses following the summation symbols
are binomial coefficients. A short computer program was
written to evaluate eq 33 for arbitrary values of the expo-
nents, which proved helpful for deriving several equations in
List 1.

Averages in List 1 that include ellipses were not proved
rigorously, but were generalized from trends that became ob-
vious while calculating smaller averages. The two final equali-
ties in the table were derived from previous equalities and
the linearity property of rotational averages.
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