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Analysis of Stark Spectroscopy Data

If we were organisms so sensitive that a single atom, or

even a few atoms, could make a perceptible impression on

our senses — Heavens, what would life be like!

— Erwin Schrödinger

What is Life?
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Abstract

Stark effect spectroscopy yields the difference between the absorption spectrum of a
sample in the presence of an externally applied electric field and the spectrum without the

field.  These difference spectra can be analyzed to yield the field dependence of excited
state energy levels and transition dipoles.  An essential component of this analysis is

knowledge of the electric field at the sample; while there is no good solution for this

problem at present, this chapter presents an improved version of the Lorentz model based
on simple dielectrics.  Equations for difference spectra are derived from Stark parameters

(the molecular difference dipole, difference polarizability, and transition polarizability)
using clearly defined assumptions, which demonstrate that difference spectra are

convolutions of the corresponding absorption spectrum and a function which depends

only on the Stark parameters.  Due to the convolution relationship, Stark spectra are fit
with the derivatives of the absorption spectrum.  Inverting the equations for the Stark

spectra yields the Stark parameters in terms of spectral observables.  Two sets of

equations are given: a set for a quick analysis of Stark effect data which assumes a simple
polarization angle dependence and a set that allows a complete analysis of the Stark

parameters.

Introduction

Stark effect spectroscopy measures the spectral change caused by the application of

an external electric field to a sample1.  Electronic Stark spectroscopy examines the effect

of a field on electronic transitions in small molecules, proteins, or other systems, yielding
information on the difference in dipole moments and polarizabilities between the ground

and excited states1.  Vibrational Stark spectroscopy is a newer method2-4 which has been

used to study internal electric fields5, bond anharmonicities, and perturbations of electron

clouds in molecules by electric fields6,7.  While relatively simple experimentally, Stark

spectroscopy methods provide unique observations of the structures and electronic
behaviors of molecules and proteins.
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At its simplest level, Stark effect data are no more than empirically measured

difference spectra; a Stark spectrum is the difference between the sample absorption with
the electric field turned on and the absorption with the field turned off.  These spectra

need to be fit with an appropriate model function and then interpreted to yield useful
information about the sample, which is the topic of this chapter.   A small fraction of the

results presented here has been published before in journal articles1,8-10, other portions

are briefly described in other doctoral dissertations11-13, and much is original work.
Unfortunately, few of the results are readily available in the literature, despite their utility

for analysis of Stark effects.  While higher order Stark spectroscopy is discussed below, it
is only considered for conventional Stark effects, not for the resonant Stark effects where

the technique is most useful14,15.

This chapter is divided into three sections, which are largely independent of each
other.  (i) The first section addresses the independent variable of Stark spectroscopy,

which is the electric field.  Determining the actual value of an externally applied electric
field at a sample molecule is surprisingly difficult since sample molecules are small

enough that local electrostatic perturbations arising from the solvent or other local

structure cannot be ignored.  (ii) Assuming an adequate understanding of the local field
can be achieved, it is possible to predict a Stark effect spectrum from molecular

parameters, as shown in the second section.  This calculation is rarely useful on its own
but it serves to present the approximations that are typically made and it presents a

qualitative understanding of the origins of Stark spectral lineshapes.  (iii) Inverting the

equations in the previous section, the molecular Stark effect parameters are calculated
from Stark spectra.  This section is likely to be the most useful one for the reader,

because it presents simple equations for a quick analysis of Stark effect data, as well as
the more detailed equations required for a complete analysis.

I.  The Local Field

The local electric field is the field at the location of a chromophore, ignoring the
field contribution created by the chromophore.  Stated in a different way, it is the total

field incident on the chromophore by all external sources.  In the general case, the local
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field is a function of the position within the chromophore volume.  Also, it differs

between sample molecules due to inhomogeneous solvent structure.

The local field at any point in space can be approximated as the sum of the matrix

field and a term which is proportional to the external field,

† 

Fint = Fmatrix + f ⋅ Fext . (1)

The matrix field, Fmatrix, is the local field in the absence of an applied field; it accounts for

the solvent reaction field16-19 and for the field due to other organized local structure,

such as nearby protein residues20-22.  F ext is the average field external to the sample

molecule in the nearby solvent.  For the bulk measurements considered here, the external

field is simply equal to the applied field, which is the applied voltage divided by the
electrode spacing.  The local field correction factor, f, is a tensor in a general treatment,

but is typically approximated by a scalar for Stark spectroscopy1.  Also, the
inhomogeneity of f within the volume of a chromophore and the variability of f between

different chromophore molecules are typically ignored.  While these are major

approximations, they are partially justified in the following discussion of dielectrics.  The
local field correction factor is also a function of the electric field frequency.  Only the

zero frequency value is of interest for Stark effect spectroscopy but other frequencies are

required by researchers interested in absolute linear23 and non-linear24 optical properties.

It is sometimes possible to largely side-step the local field issue, by reporting results

in terms f.  For example, linear Stark effects can be given in units of Debye/f and
quadratic Stark effects in units of Å3/f2.  This is useful for comparison of results between

samples dissolved in similar solvents, because f, while unknown, is expected to remain
nearly constant.  Local field correction values between 1.1 and 1.4 are typically assumed

for condensed phase samples1,24.

The standard method for estimating the value of f assumes that the solvent behaves
as a uniform linear dielectric with dielectric constant e, even in the inner-most solvation

shell.  The Lorentz spherical cavity model ignores the field due to the chromophore by

considering a hypothetical system in which the chromophore is removed from the

solvent, leaving a cavity25.  After dielectric equilibration, the field in a spherical cavity26
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is found to be uniform and directly proportional to the external field, with a field

correction factor of

† 

f =
3e

2e +1 (2)

It has been shown that cavities with irregular surfaces, as they must be for real molecules,

lead to very similar results27.  While this model is commonly used, it ignores the effect of

electrical polarization of the chromophore on the surrounding solvent.  A preferable

method is to model a chromophore in a solvent as a spherical dielectric with dielectric
constant e2, surrounded by solvent with dielectric constant e1.  With this improved model,

the local field is still uniform and parallel to the external field, and the local field

correction factor is

† 

f =
e1 e2 + 2( )
2e1 + e2

(3)

(Derivation method: the solvent electric field is presented for a two dielectric system by

Böttcher26, from which the solvent polarization and solvent surface charge are calculated;
keeping the solvent polarization fixed, the solute is replaced by a cavity, and the field is

calculated in the cavity using the solvent surface charge.)  Eq. 3 can be simplified to the
spherical cavity model by assigning a value of 1 to e2, simplifying the result to match eq.

2.

A commonly used glass-forming solvent is 2-methyl-tetrahydrofuran (2-MeTHF),

which has a liquid phase room temperature dielectric constant of 6.828.  Assuming that
the sample has a similar dielectric constant, the local field correction value is found to be

either 1.4 or 2.9, using eqs. 2 and 3, respectively.  Clearly, the choice of the model makes
a significant difference.  However, modern Stark effect measurements are typically

carried out on immobilized samples, in which both the sample and solvent dielectric

constants are greatly reduced due to the lack of rotational mobility.  Frozen solvent

dielectric constants are rarely reported29, but are straightforward to measure.  By

measuring the capacitance increase of a Stark effect cell between an empty cell and one
filled with frozen solvent using a commercial pulsed capacitance meter, it was found that

the dielectric constant for frozen 2-MeTHF is about 2.2 and that it is about 2.5 for a
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frozen glycerol/water mixture.  Using the frozen 2-MeTHF dielectric constant, the

Lorentz model gives f=1.2 for 2-MeTHF, while eq. 3 gives f=1.4.  These values are close
to the ones that are typically assumed.

Rather than estimating local field correction factors from equations that assume
uniform dielectrics, a preferable method may be through comparison of condensed phase

Stark effect results with either vapor phase Stark results30-32 or with high level ab initio

calculations of either Stark effects33 or local electric fields21,34.

II.  Derivation of Stark Fitting Coefficients from Stark Parameters

The basic equations of Stark spectroscopy express the shift of the transition
frequency, Dn (F), and transition dipole, M(F), as Taylor expansions in terms of the local

electric field, F:

  

† 

Dn F( ) = -
1
hc Dm ⋅F +

F ⋅ Da ⋅F
2 +

Db:F 3

6 +L
Ê 

Ë 
Á 

ˆ 

¯ 
˜ (4)

  

† 

M F( ) = M + A ⋅ F + F ⋅B ⋅F +L (5)

h is Planck’s constant and c is the speed of light.  Implicit in these expansions is the
assumption that field effects are small, so effects that are higher order in the electric field

may be ignored.  ∆m is a vector called variously the difference dipole moment, the linear

Stark effect, or the Stark tuning rate, and is typically the dominant factor for field

dependent spectral changes.  ∆a is a matrix called either the difference polarizability or

the quadratic Stark effect, and is typically most important for inversion symmetric
systems, for which ∆m vanishes by symmetry; ∆b is the difference hyperpolarizability

and is typically very small.  In all cases, the differences refer to the difference between

the ground state and the excited state, although this literal interpretation is misleading for

vibrational transitions6,35.  A  and B  (capital alpha and capital beta) are the transition

polarizability and transition hyperpolarizability tensors, respectively, and give rise to

field dependent absorption intensity changes.

Fundamental assumptions.  From Fermi’s Golden Rule, the molar decadic

extinction coefficient of a single molecule is given by36



Analysis of Stark Spectroscopy Data40

† 

e n ( ) =
pN An 

e0hln10 ê ⋅ M( )2
r n ( ) (6)

NA is Avagadro’s number, e0 is the electrical permitivity of vacuum, n  is the light

frequency in wavenumbers, ê is a unit vector in the direction of the light polarization, M
is the transition dipole moment, and r(n ) is the density of states.  The density of states

term includes all effects of lifetime broadening and other homogeneous broadening, and
is thus the homogeneous lineshape function.  To include heterogeneous broadening, r(n )

is replaced by the heterogeneous lineshape function, S(n ).  If one makes the assumption

(#1) that different sample molecules do not interact, then the extinction coefficient of a

bulk sample is simply the average of extinction coefficients for individual molecules,
with proper weighting to account for the different orientations.  Assuming (#2) that

heterogeneous broadening is independent of orientation (this would not be the case for a
crystalline matrix, for example), the bulk extinction coefficient becomes

† 

e n ( ) =
pN An 

e0hln10 ê ⋅M( )2 S n ( ) (7)

where the notation ·…Ò indicates orientational averaging.  Orientational averaging is

discussed in Appendix A.

When an external electric field is applied to a sample, many things could happen.
These include Stark type perturbations of energy levels, re-orientation of sample

molecules, bond strength changes, chemical alterations, or even ionization.  Most of these

changes fundamentally, and sometimes irreversibly, change the absorption spectrum.
However, we will assume that the only change that occurs is a small and reversible

perturbation of the eigenstates.  More precisely, we assume (#3) that the excited state
lifetime and dynamics are unaffected, leading to a conserved homogeneous lineshape

function15, (#4) that the heterogeneous broadening is unaffected, and (#5) that the

distribution of sample molecule orientations is unaffected.  The assumption of conserved
heterogeneous broadening is more significant than it might appear.  A primary cause of

heterogeneous broadening is expected to be heterogeneity in the solvent reaction field, as
discussed above, causing a range of solvent induced Stark shifts.  If the molecule exhibits

a significant quadratic Stark effect, then two molecules with the same orientation but
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different matrix electric fields would exhibit different spectral shifts in an externally

applied electric field.  In this case, the bandshape would not be conserved.

In an electric field, the extinction coefficient is the same as in eq. 7, but now with a

field dependent transition dipole and a transition frequency shift,

† 

eF n ( ) =
pN An 

e0hln10 ê ⋅M F( )[ ]2 S n - Dn ( ) (8)

As before, Dn  is a function of the field, although it isn’t shown explicitly here, or below,

for clarity.  The functions f(n ) and g(n ) are defined as the field-off and field-on

extinction coefficients given in eqs. 7 and 8, but without the factor of n  and the
collection of constants that are the same for both equations,

† 

f n ( ) ≡ ê ⋅ M( )2 S n ( ) (9)

† 

g n ( ) ≡ ê ⋅M F( )[ ]2 S n - Dn ( ) (10)

With a couple manipulations of eqs. 9 and 10, g(n ) may be rewritten as a convolution of
f(n ) with some new function, which we will call the shift function and write as h(y),

† 

g n ( ) =

ê ⋅ M F( )[ ]2 f n - y( )d Dn - y( ) dy
y
Ú

ê ⋅M( )2 (11)

† 

= h y( ) f n - y( )dy
y
Ú (12a)

† 

= f * h( ) n ( ) (12b)

where

† 

h y( ) ≡
ê ⋅M F( )[ ]2

d Dn - y( )
ê ⋅M( )2 (13)

Thus, a function containing the entire Stark effect, h(y), has been separated from the

spectral lineshape.  Molecules with the same Stark parameters have the same shift
function, regardless of their spectra.  In principle, h(y) can be measured directly as the
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deconvolution of a Stark spectrum with the absorption spectrum, although this is virtually

never possible in practice due to signal-to-noise issues.

In the limit of zero field, g(n ) is equal to f(n ) and h(y) is a delta function at y=0

with unit area (the convolution identity function).  As the field is increased, g(n ) and h(y)
typically become broadened and shifted, with the shape of h(y) describing the difference

between f(n ) and g(n ).

The shift function also depends on the angle between the light polarization and the
applied field, which is given as c.  If the sample is isotropic, h(y) is simply related to the

shift functions for the limiting cases of light polarization parallel and perpendicular to the

electric field, h||(y) and h^(y), respectively,

† 

h y( ) = h|| y( )cos2c + h^ y( )sin2c (14)

This relation is found from eq. 13 or from the discussion of orientational averaging,
presented in Appendix A.  Rather than separating h(y) into parallel and perpendicular

functions, it can be separated into a c independent term and a c dependent term, also

presented in Appendix A.

If the sample is not isotropic37, then a cross-term is required as well, h¥(y).  For

convenience the field is taken to be along the Z-axis and the polarization of light is taken
to be in the X-Z plane (capital letters are used for the lab frame axes and X and Z are unit

vectors along the respective axes).

† 

h¥ y( ) =
X ⋅M F( )[ ] Z ⋅ M F( )[ ]d Dn - y( )

ê ⋅M( )2 (15)

† 

h y( ) = h|| y( )cos2c + 2h¥ y( )sinccosc + h^ y( )sin2c (16)

The shift function.  Before moving on to Stark effects for general situations, the
shift function is considered for a couple very simple systems to illustrate the basic

connections between the Stark parameters and the shift function.  In all of these, sample

isotropy is assumed.
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Figure 1.  Components of observed Stark effects for examples described in text.
(A) ∆a is isotropic and non-zero.  (B) A is only non-zero for zz element.  (C) ∆m
is non-zero and parallel to M.  In panels A and C, the abscissa typically extends
over much less than 1 cm–1.  Panels D, E, and F show calculated Stark effects for
a Gaussian peak centered at 2020 cm–1 with 10 cm–1 full width at half maximum
and peak absorption of 1, in a 1 MV/cm field, using the same assumptions as
panels A, B, and C.  (D) ∆a is 1 Å3 for each diagonal component.  (E) A·F is 0.1
times M.  (F) ∆m is 0.05 D.  The || and ^ designations refer to the angle between
the electric field and the light polarization.

For the first system, consider one which, by symmetry or coincidence, has most
terms vanish in eqs. 1 and 2, leaving only a difference polarizability term.  It is also

assumed that the Da matrix is diagonal with each diagonal term equal to the scalar Da.

An example is the forbidden 1sÆ2s transition in the hydrogen atom (ignoring the nearly

degenerate 2p level).  The shift function in eq. 13 simplifies to just a delta function,

because the delta function is independent of orientation, allowing it to be pulled out of the
orientational average.

† 

h y( ) = d y +
Da F 2

2hc
Ê 

Ë Á 
ˆ 

¯ ˜ (17)
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In this example, the absorption band of each molecule shifts the same amount, regardless

of the molecule’s orientation.  As a result, the spectrum simply shifts to lower energy by
Da|F|2/(2hc).  The shift function for this simple quadratic Stark effect is shown in Figure

1A.

The second system is one which exhibits only a transition polarizability, and no
Stark shift.  Also, the transition polarizability matrix, A, is defined to have only one non-

zero element, the Azz component, which is set to the scalar A.  This implies that a field

along the molecule’s z-axis modifies the magnitude of the transition dipole, while fields
along other axes have no effects on the spectrum.  Using the orientational averaging

method discussed in Appendix A, the denominator of h(y) is easily solved,

† 

ê ⋅ M( )2
=

M 2

3 (18)

The numerator is solved separately for the parallel and perpendicular shift functions,
again with orientational averaging methods,

† 

h|| y( ) = 1 +
3F 2 A2

5M 2

Ê 

Ë Á 
ˆ 

¯ ˜ d y( ) (19a)

† 

h^ y( ) = d y( ) (19b)

Thus, the transition polarizability only affects the spectrum when the light polarization is
at least partially parallel to the field, and the effect is maximized when they are

completely parallel (figure 1B).  The effect, which is simply an increase of absorption
intensity, is generally quite small because it is proportional to A2.  For example, even if a

molecule’s absorption increases by 10% when it is oriented parallel to an electric field,

the absorption of an isotropic sample only increases by less than 1%.

As a final example, suppose that only the difference dipole is significant and that it

is parallel to the transition dipole moment.  This system is the one most similar to typical
systems studied experimentally.  The denominator of h(y) is the same as in the previous

example, given in eq. 18.  However, the numerator takes more work to solve, and,

because the delta function does not pull out of the average, standard orientational
averaging methods are of minimal use.  Instead, the averaging integral has to be done
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explicitly.  The only important Euler angle here is q, which is defined as the angle

between M and the Z axis.  Solving first for h||(y),

† 

h|| y( ) =
3

M 2 Z ⋅M( )2
d -

Dm ⋅F
hc - yÊ 

Ë 
ˆ 
¯ 

† 

=
3

M 2 M 2cos2q d -
Dm F cosq

hc - y
Ê 

Ë Á 
ˆ 

¯ ˜ 

† 

=
3
2 cos2q d -

Dm F cosq
hc - y

Ê 

Ë Á 
ˆ 

¯ ˜ sinq dq
0

p

Ú

† 

=
3
2 cos2q d -

Dm F cosq
hc - y

Ê 

Ë Á 
ˆ 

¯ ˜  d cosq( )
1

-1

Ú

† 

=

3y2

2
hc

Dm F
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

3

for y <
Dm F

hc

0 for y >
Dm F

hc

Ï 

Ì 
Ô 
Ô 

Ó 
Ô 
Ô 

¸ 

˝ 
Ô 
Ô 

˛ 
Ô 
Ô 

(20a)

The derivation of h^(y) is very similar.  The differences are that (ê·M)2 becomes |M|2

cos2f sin2q, and there is an integral over all f as well.  The result is

† 

h^ y( ) =

3hc
4 Dm F

1-
hcy

Dm F
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

for y <
Dm F

hc

0 for y >
Dm F

hc

Ï 

Ì 

Ô 
Ô 

Ó 

Ô 
Ô 

¸ 

˝ 

Ô 
Ô 

˛ 

Ô 
Ô 

(20b)

These shift functions are shown in Figure 1C.  To interpret the functions, it is seen that

the band shift of a molecule oriented parallel to the field is |∆m||F|/hc, and the shift is less

for other angles.  Due to sample isotropy, half the molecules have spectra that shift to
lower energy, while the other half shift to higher energy, leading to a symmetric h(y) and

to a net band broadening.  Meanwhile, the molecules that are detected best are those

oriented with their transition dipoles parallel to the light polarization, leading to the
differences between h||(y) and h^(y).

Moments of the shift function.  While the shift function is nice conceptually, it is

nearly impossible to measure it accurately and it is nearly impossible to derive it for all
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but the simplest cases.  The solution is to expand the shift function in terms of its

moments, which is done using a couple Fourier transform identities.  The notation used
here is that a(n ) or a(y) is a function in wavenumber space, while   

† 

) a (x) is its Fourier

transform in position space.  Starting with eq. 12,

† 

g n ( ) = f * h( ) n ( ) definition of convolution

  

† 

) g x( ) = 2p
) 
f x( )

) 
h x( ) convolution theorem

  

† 

= 2p
) 
f x( )

1
j!

) 
h j( ) 0( )

j
Â x j Taylor expansion of   

† 

) 
h (x)

  

† 

= 2p
i- j

j! f j( ) x( ) 
) 
h j( ) 0( )

j
Â derivative theorem

  

† 

g n ( ) = 2p
i- j

j!
) 
h j( ) 0( ) f j( ) n ( )

j
Â inverse transform (21)

Thus, g(n ) is expanded in terms of the derivatives of f(n ).  The expansion coefficients

may be simplified some.

  

† 

) 
h j( ) x( ) = -iy( ) j h y( )[ ] x( ) derivative theorem

  

† 

) 
h j( ) 0( ) =

i- j

2p
y jh y( )

y
Ú  dy inverse transform at x=0

† 

=
i- j

2p
m j    where   

† 

m j ≡ y jh y( )
y
Ú  dy definition of mj (22)

The mj terms are the moments of h(y).  Finally,

† 

g n ( ) =
-1( ) j m j

j!  f j( ) n ( )
j

Â

 
  

† 

= m0 f n ( ) - m1 ¢ f n ( ) +
m2

2 ¢ ¢ f n ( ) -
m3

3! ¢ ¢ ¢ f n ( ) +L (23)

This gives the Stark spectrum as a sum of derivatives of the absorption spectrum, where

the coefficients are the moments of the shift function.  The expansion coefficients are

measurable variables, as explained below.  There are several interpretations for the mj
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terms.  They are the moments of h(y), or, essentially, the Taylor expansion coefficients of

  

† 

) 
h (x).  Another view is that the function h(y) is zero except across a narrow region near
the origin (Fig. 1).  Due to its finite extent, it may be expanded as a delta function, plus

the first, second, and higher order derivatives of the delta function; the mj terms are the
expansion coefficients for this sum of delta function derivatives.  Regardless of the

interpretation, the important point is that any convolution can be rewritten as a sum of the

derivatives of one of the functions; similarly a sum of derivatives can be rewritten as a
convolution.

Stark spectral lineshapes.  Since a Stark spectrum can be expressed as a
convolution and a convolution can be expressed as a sum of derivatives of one of the

functions, Stark spectra are fit with the derivatives of the absorption spectrum.  Due to

the factors of n  in eqs. 7 and 8, spectra can be divided by n  before fitting to yield

  

† 

g n ( ) - f n ( ) = Z0 f n ( ) + Z1 ¢ f n ( ) + Z2 ¢ ¢ f n ( ) +L (24a)

Z0 is called the zeroth derivative contribution, Z1 is the first derivative contribution, and
so on.  An equivalent expression yields a fit of the Stark difference spectrum in terms of

frequency weighted derivatives of the absorption spectrum,

  

† 

De n ( ) = Z0e n ( ) + Z1n 
∂

∂n 
e n ( )

n 
+ Z2n 

∂2

∂n 2
e n ( )

n 
+L (24b)

The mj coefficients are closely related to both these fit coefficients and to the commonly

published parameters, Ac, Bc, and Cc (although the latter ones are just the coefficients for

Stark effects that are proportional to |F|2, whereas the mj coefficients include higher order

field contributions as well).

† 

m0 = Z0 +1 = Ac F 2
+1 (25)

† 

m1 = -Z1 = -
Bc F 2

15hc (26)

† 

m2 = 2Z2 =
Cc F 2

15h2c2 (27)
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Returning to the definition of h(y) in eq. 13, the mj coefficients are derived from the Stark

parameters,

† 

m j =
1

ê ⋅M( )2 y j ê ⋅ M F( )[ ]2
d Dn - y( ) dy

y
Ú

† 

=
3

M 2 ê ⋅ M F( )[ ]2
Dn ( ) j (28)

This final equation forms a link between the molecular Stark parameters and the

measurable fit coefficients.  At this point, it is straightforward, though lengthy, to derive

the mj values for the general case, which is done below.  First, though, it is instructive to
return to the three examples for which h(y) was solved exactly.

For the first example, in which only Da is non-zero,

† 

m j|| = m j^ =
-Da F 2

2hc
Ê 

Ë Á 
ˆ 

¯ ˜ 

j

(29)

Electronic Stark spectroscopy is typically measured with a lock-in amplifier, tuned to the

n’th harmonic of the field frequency, yielding an nw Stark spectrum.  An nw Stark

measurement selects only the terms of the Stark difference spectrum that are proportional
to |F |n.  Thus, in this example a 2w  Stark measurement will show a first derivative

lineshape (m1 is non-zero), a 4w measurement shows a second derivative lineshape (m2 is

non-zero), 6w  is exclusively third derivative, and so forth.  A DC Stark effect

measurement measures all field components at once, so a DC Stark spectrum for this
example system has all derivative contributions, except the zeroth.  Since experimental

fields are small though, the |F |2 term dominates and the result is essentially a first
derivative lineshape, as seen in Figure 1D.

For the second example, with only A, only the m0 term is non-zero which leads to

what’s called a zeroth derivative lineshape (Figure 1E),

† 

m0|| = 1+
3A2 F 2

5 M 2

† 

m0^ =1 (30)
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Here, only the 2w Stark spectrum is affected, and the result only appears in the zeroth

derivative contribution.

Finally, in the third example, with only Dm, the odd j terms are zero, while the even

ones are given by

† 

m j|| =
3

j + 3
Dm F

hc
Ê 

Ë Á 
ˆ 

¯ ˜ 

j

† 

m j^ =
3

j +1( ) j + 3( )
Dm F

hc
Ê 

Ë Á 
ˆ 

¯ ˜ 

j

(31)

A 2w Stark spectrum is only second derivative, 4w is only fourth derivative, and so forth.

As before, a DC Stark spectrum has all these components, but the |F|2 term dominates,

seen by the second derivative lineshape in Figure 1F.

When multiple Stark parameters are combined, such A and Dm, cross-terms are

created that yield more complex Stark spectra and other derivative contributions than just
those listed for these simple cases.  Nevertheless, for either standard 2w  Stark

spectroscopy or DC Stark spectroscopy, zeroth derivative contributions are generally

associated with the transition polarizability and second derivative contributions with the

difference dipole.  The first derivative contribution may result from either a difference

polarizability, as is typical for electronic transitions38, or from the cross-term of A and

∆m, as is typical for vibrational transitions7.

General derivative coefficients.  Finally, the derivative coefficients for the general
case are derived, from an expansion of eq. 28,

† 

m j =
3

h jc j M 2 ê ⋅ M + ê ⋅A ⋅ F[ ]2
Dm ⋅F +

1
2 F ⋅ Da ⋅FÊ 

Ë 
ˆ 
¯ 

j

(32)

Moments (derivative contributions) are derived for only lowest order polarizabilities and

for 2w and 4w Stark spectra.  However, the transition hyperpolarizability is also included

in the zeroth moment, because that is the only equation where its effect is seen in the 2w

spectrum.  If it can be assumed that the Stark parameter tensors (∆a, A , and B) are
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symmetric, which is generally not the case, the equations given below can be simplified

some, as published previously1,13.

† 

m0 = 1

   +
F 2

3 M 2

TrA TA + 2 M i Bijj

+
3cos 2 c - 1

10
-2 TrA TA + 3 TrA( )2 + 3Tr A 2( ) - 4M i Bijj + 6M i B jij + 6M i B jji[ ]

Ï 

Ì 
Ô 

Ó 
Ô 

¸ 

˝ 
Ô 

˛ 
Ô 

   +
F 4

M 2

1
15

Bijj Bikk + Bijk Bijk + Bijk Bikj( )

+
3cos 2 c - 1

70

-
4
3

Bijj Bikk + Bijk Bijk + Bijk Bikj( ) + Biij + Biji( ) B jkk + Bkkj + Bkjk( )
+Bijk B jik + Bkij + B jki + Bkji( ) + Bijj Bkik + Bkki( )

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

Ï 

Ì 

Ô 
Ô Ô 

Ó 

Ô 
Ô 
Ô 

¸ 

˝ 

Ô 
Ô Ô 

˛ 

Ô 
Ô 
Ô 

   + O F 6( )
(33)

† 

m1 = -
F 2

hc M 2

M 2 TrDa
6

+
2MADm

3

+
3cos2 c - 1

5
-

2 M 2TrDa
12

+
2MDaM

4
-

2MADm
3

+ DmAM + MDmTrA
È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

Ï 

Ì 

Ô 
Ô 

Ó 

Ô 
Ô 

¸ 

˝ 

Ô 
Ô 

˛ 

Ô 
Ô 

   -
F 4

hc M 2

1
30

TrAT ATrDa + 2TrADaAT( )

+
3cos2c -1

140
-

4TrAT ATrDa
3

-
8TrADaAT

3
+ TrA( )2 TrDa + 2TrATrATDa

+2TrATrADa + TrA2TrDa + 2TrADa T A + 2TrADaA + 2TrAT DaA

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

Ï 

Ì 

Ô 
Ô Ô 

Ó 

Ô 
Ô 
Ô 

¸ 

˝ 

Ô 
Ô Ô 

˛ 

Ô 
Ô 
Ô 

   + O F 6( )
(34)
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† 

m2 =
F 2 Dm 2

3h2c 2 1 +
1
5

3cos2z - 1( ) 3cos2c -1( )Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

   +
F 4

h2c 2

1
60M 2

M 2 TrDa( )2 + TrDa TDa + TrDa 2( ) + 8MA DmTrDa + DaDm + Da TDm( )
+4TrATA Dm

2
+ 8DmATADm

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

+
3cos2 c - 1
420 M 2

-2 M 2 TrDa( )2 + TrDa TDa + TrDa 2( )
+3M 2DaTrDa + DaDa T + 2DaDa + Da T Da( )M

+4M -4A + 3AT( ) TrDa + Da + Da T( )Dm

+12MDm TrATrDa + TrATDa + TrADaT( )
+12M Da + Da T( ) TrA + AT + A( )Dm

+2Dm -4TrATA - 8AT A + 3 TrA( )2 + 12ATrA+ 3TrA2 + 12AA + 6AAT( )Dm

È 

Î 

Í 
Í 
Í 
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Í 

˘ 
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˙ 
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   + O F 6( )
(35)

† 

m3 = -
F 4

h3c3 M 2

M 2

10
Dm

2 TrDa + 2DmDaDm( ) +
2
5

MADm Dm
2

+
3cos2 c - 1

140

-4 M 2
Dm

2 TrDa - 8M 2
DmDaDm + 6Dm

2MDaM
+2MDm 3MDmTrDa + 6MDaDm + 6DmDaM( )

-16MADm Dm
2

+ 12DmAM Dm
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Í 
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Í 
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Ô 
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   + O F 6( )
(36)

† 

m4 =
F 4 Dm

4

5h4c 4 1+
2
7

3cos2z - 1( ) 3cos2c -1( )È 

Î 
Í 

˘ 

˚ 
˙ + O F 6( ) (37)

Several things are worth noting in these equations.  First, only m0, m1, and m2 include |F|2

terms, so these are the only terms that appear in a 2w Stark spectrum and they also

dominate the Stark effects with weak electric fields.  The zeroth moment is associated
exclusively with the transition polarizabilities.  The second moment of the 2w spectrum

and the fourth moment of the 4w spectrum are functions of only the difference dipole.

4w spectra include order higher derivative contributions than 2w spectra, resulting in

more structured lineshapes.  Finally, each equation has a term independent of c (the

magic angle term, mjma) and a term proportional to 3cos2c–1 (the slope term, mjs).
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III.  Stark Parameters from Fitting Coefficients

From the equations above, a Stark spectrum can be calculated from a set of Stark
parameters.  However, it is typically more desirable to determine Stark parameters from

the experimental spectrum.  The first step in data analysis is to fit Stark spectra with
frequency weighted derivatives of the absorption spectrum, yielding the fitting

coefficients, Z0 to Z2 (eq. 24).  Plotting these coefficients as a function of (3cos2c–1)

should yield a straight line if the basic assumptions in the previous section are valid7; the

line slope and intercept are the slope and magic angle values for the fit parameters, Zjs

and Zjma; also Zj^ are the fit parameters for c=90°, which are used in some equations

below.  The equations in this section only consider 2w Stark effects (DC Stark effects are

typically identical within noise to 2w Stark effects, with experimentally achievable

fields).

As there are only six observables in a standard 2w Stark spectrum, which are the

magic angle and slope terms of Z0, Z1, and Z2, and many more than six components in the

Stark parameters, several assumptions have to be made.  A reasonable set of assumptions
on the Stark parameters is to assume that B is zero and A and ∆a are diagonal:

† 

A =

A^ 0 0
0 A^ 0
0 0 A||

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

† 

Da =

Da^ 0 0
0 Da^ 0
0 0 Da ||

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

(38)

The ∆a approximation is valid for any system with rotational symmetry about the

transition dipole moment.

Transition polarizability.  With these assumptions, the following results are
derived, from the zeroth derivative results (eq. 33):

† 

Tr A 2( ) =
3M 2

F 2 Z0ma and

† 

TrA( )2
=

10 M 2

F 2 Z0s -
Tr A 2( )

3 (39)

These equations give two measures for A, which are converted into A|| and A^, as follows.

A pair of ratios are defined and related to each other,
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† 

R ≡
TrA( )2

Tr A 2( ) and

† 

a ≡
A^

A||
(40)

† 

a =
-2 ± 4 - 2 2 - R( ) 1- R( )

2 2 - R( )
(41)
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Figure 2.  Solutions for transition polarizability orientation in terms of angle
dependence of zeroth derivative fit coefficient.  A slope ratio of 0.4 implies that
A^ is 0 or that A^=–2A||; a ratio of 0.7 implies that A|| is 0 or that A^=4A||.  Slope
ratios cannot be less than 0.1 or greater than 1, with the assumptions stated in eq.
38 and previously in the text.

a, which can be positive or negative, is a measure of the orientation of the transition

polarizability; it is small if the transition polarizability is predominantly along the
transition dipole.  From eq. 41, there are two possible solutions for a: a+ and a–.  As the

correct one cannot be determined from experiment, it is worth looking at these equations

a little more carefully.  It is found that –0.5<a+<1 and –∞<a–<–0.5 or 1<a–<∞.  These
results are shown in figure 2, using the slope to intercept ratio of the zeroth derivative fit
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coefficients, which is an experimental observable, as the independent variable.  If A|| is

assumed to dominate the transition polarizability, then a+ is the correct solution.  Finally,
the desired parameters are found,

† 

A^ = TrA( )2 a
2a +1 and

† 

A|| =
A^

a (42)

Eq. 39 can also be used to show that Z0 is a positive number at any c angle, for all Stark

effects that follow the minimal assumptions listed at the beginning of the previous section

(this result turns out to be true for all transition polarizability matrices, and not just the
ones assumed in eq. 38).  This may be used as a fitting constraint, or as a check on the

validity of the assumptions.

Difference dipole.  The second derivative component is easier to interpret.  From

simple rearrangements of eq. 35, one gets:

† 

Dm =
hc
F 6Z2ma and

† 

cosz =
5Z2s

3Z2ma
+

1
3 (43)

As with the zeroth derivative fitting contribution, these equations show that the Z2 is a

positive number at any c angle (again, this only depends on the approximations made in

the previous section).

Difference polarizability.  Finally, the first derivative can be used for ∆a, after

subtracting the cross-terms from A and ∆m,

† 

TrDa =
6hcZ1ma

F 2 - 4 A||

M 2 Dm cosz

† 

Da|| =
10hcZ1s

F 2 +
TrDa

3 - 4 Dm cosz
2A||

3M +
A^

M
Ê 

Ë Á 
ˆ 

¯ ˜ 

† 

Da^ =
TrDa - Da ||

2 (44)

The first derivative fitting contribution, Z1, may be positive or negative, depending upon

the values of ∆a, A, and ∆m.
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One dimensional system.  The above equations yield the most information possible

from a complete set of angle dependent set of Stark effect data.  However, it is often the
case that data are only collected with the light polarized perpendicular to the electric field

(sample cell at normal incidence to the light beam).  In this case, the best that can be done
is to add further approximations, and consider Stark effects for a one dimensional system,

in which A^=0, ∆a^=0, and z=0.  If this assumption is valid, angle dependent fit results

have slope to intercept ratios, mjs/mjma, of exactly 0.4 for all three derivative components.

In terms of the fit coefficients for c=90°, the Stark parameters are:

† 

A|| = ±
5M 2 Z0,^

F 2 (45)

† 

Dm =
10h2c2Z2,^

F 2 (46)

† 

Dazz =
10hc
F 2 Z1,^ - 2 2Z0,^Z2,^( ) (47)

For the Stark spectroscopist who is exceptionally averse to algebra, numbers can be
substituted into eqs. 45 to 47 to yield the Stark parameters in their customary units.  It is

assumed below that the field is 1 MV/cm, that Z0,^ is unitless, Z1,^ has units of cm–1, and

Z2,^ has units of cm–2.

† 

A|| = ±2.236 M Z0,^ (48)

† 

Dm = 0.18832 Z2,^ (49)

† 

Da|| = 178.5Z1,^ - 504.97 Z0,^ Z2,^ (50)

A||/|M| has units of (MV/cm)–1, |∆m| is in D, and ∆a|| is in Å3 of polarizability volume.

Conclusions

Three aspects of the analysis of Stark spectroscopy are discussed here, which show
the capabilities and limitations of the data.

A formula for the local field correction factor was derived which is expected to be
an improvement over the standard Lorentz model.  However, the values of the correction
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factor are not changed significantly for frozen solvents; moreover, the improvement does

not address the principal limitations of dielectric models, which is that they are only
strictly accurate for volumes that are much larger than molecular dimensions.  The most

promising methods for determining local fields are either ab initio calculation of the

fields21,34 or comparison of Stark effect measurements with independent determinations

of the Stark effect (such as ab initio methods39,21.

Starting with a set of assumptions about Stark effects, where the primary one is that
the bandshape is unaffected by an electric field, the spectral response was calculated for a

given set of Stark parameters.  Because of these assumptions, it is possible to express a
Stark lineshape as a convolution of the corresponding absorption spectrum with a

separate function which depends only on the Stark parameters, called the shift function.

Corollaries are that i) it is possible to analyze Stark spectra in terms of the derivatives of
the absorption spectrum and ii) an entire 2w Stark spectrum can only yield up to three

independent pieces of information (fit coefficients for the three derivative components).

DC Stark spectra (as opposed to measurements with a lock-in amplifier) can yield more
information in principle, but generally cannot do so in practice because of the low fields

achievable and noise limitations.  Collecting Stark spectra as a function of the c angle

doubles the possible information to six values.

Inverting the calculations of Stark spectra yields the molecular Stark parameters in
terms of fitting coefficients.  Eqs. 48 to 50 are useful for a basic analysis of Stark data

collected with the light polarization perpendicular to the electric field.  An analysis of

angle dependent data is not much more difficult, using eqs. 39 to 44, and yields parallel
and perpendicular components of the transition polarizability and the difference

polarizability matrices, as well as the angle between the difference dipole and the
transition dipole.  It is found that the zeroth and second derivative fitting contributions

are expected to be positive values.  This may be used as a fitting constraint or to identify

systems that do not obey the basic assumptions of conventional (non-resonant) Stark
effects.
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