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The random.h and random.c library files have been fully superceded by random2.h and 
random2.c as of 4/18/08.  The prior files are kept solely for compatibility with old code.  
Updating old code should be fairly easy since there is a close correspondence between 
old and new function names.  A few functions did not change names, but most got 
appended with a few letters. 
 
Header 
 
#ifndef __random_h 
#define __random_h 
 
#include <time.h> 
#include <stdlib.h> 
#include <math.h> 
 
#define RAND_MAX_30 1073741823 
#if RAND_MAX==32767 
 #define rand30() ((long)rand()<<15|rand()) 
#elif RAND_MAX<RAND_MAX_30 
 #define rand30() ((rand()&32767L)<<15|rand()&32767L) 
#else 
 #define rand30() (rand()&RAND_MAX_30) 
#endif 
 
#define exprand(a) (-log(((float)rand()+1.0)/(RAND_MAX+1.0))*(a)) 
#define exprand30(a) (-log(((double)rand30()+1.0)/(RAND_MAX_30+1.0))*(a)) 
#define unirand(lo,hi) ((float)rand()/RAND_MAX*((hi)-(lo))+(lo)) 
#define unirand30(lo,hi) ((double)rand30()/RAND_MAX_30*((hi)-(lo))+(lo)) 
#define signrand() (rand()&1?1:-1) 
#define coinrand(p) (rand()<(RAND_MAX+1.0)*(p)) 
#define coinrand30(p) (rand30()<(RAND_MAX_30+1.0)*(p)) 
#define intrand(n) (rand()%(n)) 
#define intrand30(n) (rand30()%(n)) 
#define thetarand() (acos(1.0-2.0*rand()/RAND_MAX)) 
#define radrand1(r) ((r)*sqrt((float)rand()/RAND_MAX)) 
#define radrand2(r) ((r)*pow((float)rand()/RAND_MAX,0.333333333333)) 
#define powrand(xmin,power) 

(xmin*pow(((float)rand()+1.0)/(RAND_MAX+1.0),1.0/(1.0+power))) 
#define powrand30(xmin,power) 

(xmin*pow(((double)rand30()+1.0)/(RAND_MAX_30+1.0),1.0/(1.0+power))) 
 
unsigned int randomize(); 
float binomrand(int n,float m,float s); 
int intrandp(int n,float *p); 
int poisrand(float xm); 
int poisrandD(double xm); 



float binomialrand(float p,int n); 
float gaussrand(); 
void sphererand(float *x,float rad1,float rad2); 
void sphererandd(double *x,double rad1,double rad2); 
void Rand_TriPtD(double *pt1,double *pt2,double *pt3,int dim,double *ans); 
void randtable(float *a,int n,int eq); 
void randtableD(double *a,int n,int eq); 
void randshuffletable(float *a,int n); 
void randshuffletableD(double *a,int n); 
void showdist(int n,float low,float high,int bin); 
 
#endif 
 
History 
 

Written 5/12/95; modified 11/12/98.  Routines have been moderately tested.  Works 
with Metrowerks C.  Documentation updated 10/16/01.  Ported to Linux 10/16/01.  
Added randtable 11/16/01.  Added intrandp 1/14/02.  Added poisrand 1/26/02.  Added 
rand30 and other …30 functions 11/8/02, but didn’t document them until 9/2/03.  Added 
gaussrand 4/24/03.  Added intrand30, coinrand30, RAND_MAX_30, and improved unirand 
and unirand30 9/2/03.  Added radrand1 3/11/04.  Added radrand2 and sphererand 
3/25/04.  Replaced a few implicit type casts with explicit ones 6/9/04.  Added 
randshuffletable 7/21/05.  Changed randomize() from a macro to a function 8/26/05.  
Added binomialrand 3/28/06.  Added powrand and powrand30 11/13/06. 
 
 
Description 
 

Most of these routines return random numbers, chosen from a variety of densities.  
They use the stdlib.h rand() function, and have not been analyzed for the randomness 
quality.  Before using these routines, it is recommended that the random number 
generator seed be set with either the stdlib.h function srand(unsigned int seed) or set to 
the clock value with randomize. 

Note that 1.0*rand()/RAND_MAX returns a uniform density on [0,1] and 
(rand()+1.0)/(RAND_MAX+1.0) is uniform on (0,1].  To convert these uniform densities to 
the density ρ(x), first calculate the cumulative probability P(x)=–∞∫xρ(x')dx', where it is 
seen that P(x) is 0 at x=–∞ and 1 at x=∞.  Now if the value for y=P(x) is chosen with a 
uniform density, its value mapped onto x has the desired density.  Thus a function should 
return  x=P–1(y).  It is also helpful to know that the CodeWarrior compiler on a Macintosh 
has RAND_MAX equal to 215–1, whereas it is 231–1 for the gcc compiler on Linux.  The 
routines that end with a “30” are especially helpful on a Macintosh (and hinder slightly on 
Linux) by allowing 230 possible random numbers.  For the most part, I have not had any 
trouble with the randomness quality on a Macintosh, although in one instance I found net 
diffusion of randomly moving particles towards the center of the volume; this 
undoubtedly arose from an imperfect random number generator, although the precise 
problem is unclear.  I solved it by shuffling the lookup table that I was using. 

 
 



Math 
 
For the most part, I have not been documenting the math that goes into these 

routines.  However, here is a little of it. 
This is the math for the function called Rand_TriPtD.  The “easy” problem is to find 

a random point in a 2-dimensional triangle which has been arranged so that point 
numbers 0, 1, and 2 have x values that increase from 0 to 1 and from 1 to 2.  Suppose this 
is the case.  The triangle point coordinates are (x0,y0), (x1,y1), and (x2,y2).  From these, one 
can calculate the slopes from one point to another: 
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Also, one can calculate the triangle area as the distance that y1 is above the 0-2 line, 
measured parallel to the y-axis, times the x distance between points 0 and 2, divided by 
two: 
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This area is positive if y1 is above the 0-2 line and negative if it is below.  The integral of 
the triangle area, starting from point 0 and then normalized with respect to the triangle 
area, is found to be 
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This function is 0 at x = x0, 1 at x = x2, and increases monotonically in between.  At x1, the 
value can be calculated from either function to be 
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The inverse of the function is used to find a random x value given a uniformly distributed 
random Y value: 
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This solves the problem of finding a random x-coordinate within the triangle.  Next, a 
random y-coordinate is found.  The y range at position x is 
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A random y value is chosen within this range using a uniform density.  Thus, the problem 
of finding a random set of coordinates within a triangle is solved for the simple case.  
Additional complexity arises from having to order the points. 

For three-dimensions, the function calculates the unknown coordinate value by first 
finding the equation for the plane that includes the 3 triangle points, and then using it to 
find the unknown.  The equation of a plane is 
 
 cxx + cyy + czz + ck = 0  
 
From the website local.wasp.uwa.edu.au/~pbourke/geometry/planeeq/, with minor 
notational changes, the equations for the coefficients cx, cy, cz, and ck, from the three 
triangle points, are 
 

 

cx = y1
(z

2
! z

3
) + y

2
(z

3
! z

1
) + y

3
(z

1
! z

2
)

cy = z1
(x

2
! x

3
) + z

2
(x

3
! x

1
) + z

3
(x

1
! x

2
)

cz = x1
(y

2
! y

3
) + x

2
(y

3
! y

1
) + x

3
(y

1
! y

2
)

! ck = x1
(y

2
z

3
! y

3
z

2
) + x

2
(y

3
z

1
! y

1
z

3
) + x

3
(y

1
z

2
! y

2
z

1
)

 

 
From the plane equation, the unknown z value is calculated for the random point from the 
known x and y values. 
 

 
Function summary 

 
The table below shows the domain, range, and densities of the macros and routines 

given here.  The domains are the domains over which the functions give reasonable 
values, but are not neccessarily sensible.  For example, coinrand can accept an input 
anywhere between –∞ and ∞, although the function always returns 0 if p<0 and 1 if p>1.  
The densities are only strictly correct in the limit that RAND_MAX approaches infinity.  In 
regions where the density is small (where ρ(x)∆x≈1/RAND_MAX, for some characteristic ∆x), 



a small set of random numbers is mapped to a large output range, leading to relatively 
sparse coverage. 

 
Name Domain Range Density 
exprand [0,∞) [0,∞) 1/a*exp(–x/a) 
 (–∞,0] (–∞,0] 1/a*exp(–x/a) 
exprand30 [0,∞) [0,∞) 1/a*exp(–x/a) 
 (–∞,0] (–∞,0] 1/a*exp(–x/a) 
unirand (–∞,∞) [lo,hi] 1/|hi–lo| 
unirand30 (–∞,∞) [lo,hi] 1/|hi–lo| 
signrand  {–1,1} {0.5,0.5} 
coinrand (–∞,∞) {0,1} {1–p,p} 
coinrand30 (–∞,∞) {0,1} {1–p,p} 
intrand [1,∞) {0,1,…,n–1} {1/n,1/n,…,1/n} 
intrand30 [1,∞) {0,1,…,n–1} {1/n,1/n,…,1/n} 
thetarand  [0,π] 1/2*sin(x) 
radrand1 (–∞,∞) [0,r] 2x/r2 
radrand2 (–∞,∞) [0,r] 3x2/r3 
powrand (–∞,∞),(–∞,–1) [xmin,∞) (1–m)/xmin*(x/xmin)m 
powrand30 (–∞,∞),(–∞,–1) [xmin,∞) (1–m)/xmin*(x/xmin)m 
binomrand n>0, all m,s [m–s√(3n),m+s√(3n)] ≈Gaussian with mean m, std. dev. s 
intrandp n>0, 0≤pi≤1 {0,1,…,n–1} {p0,p1-p0,…,1-pn-2} 
poisrand (–∞,∞) [0,∞) Poisson with mean xm 
binomialrand [0,1],[0,∞) [0,n] Binomial deviate, prob. p, n trials 
gaussrand  (–∞,∞) Gaussian with mean 0, std. dev. 1 
sphererand [0,∞)2 [–rad2,rad2]3 Point in spherical shell 
sphererandd [0,∞)2 [–rad2,rad2]3 Point in spherical shell 

 
 
Functions 

 
#define exprand(a) (-log(((float)rand()+1.0)/(RAND_MAX+1.0))*(a)) 
 This returns an exponentially distributed random number. 
 
#define exprand30(a) (-log(((double)rand30()+1.0)/(RAND_MAX_30+1.0))*(a)) 
 This is identical to exprand, except it uses a 30 bit random number. 
 
#define unirand(lo,hi) ((float)rand()/RAND_MAX*((hi)-(lo))+(lo)) 
 This returns a uniformly distributed double between lo and hi, inclusive.  Usually 

lo is less than hi, but they can also be equal or swapped. 
 
#define unirand30(lo,hi) ((double)rand30()/RAND_MAX_30*((hi)-(lo))+(lo)) 
 This is identical to unirand, except it uses a 30 bit random number. 
 
#define signrand() (rand()&1?1:-1) 
 This returns 1 or –1 with equal probability. 
 



#define coinrand(p) (rand()<(RAND_MAX+1.0)*(p)) 
 This returns 1 with probability p, and 0 otherwise. 
 
#define coinrand30(p) (rand30()<(RAND_MAX_30+1.0)*(p)) 
 This is identical to coinrand, except is uses a 30 bit random number. 
 
#define intrand(n) (rand()%(n)) 
 This returns an integer between 0 and n-1 with equal probability for each value.  

The probability distribution is correct if n is a divisor of RAND_MAX+1 (i.e. an integer 
power of 2), quite good if n is a small integer, and poor if n is a significant fraction 
of RAND_MAX and not a divisor of RAND_MAX+1. 

 
#define intrand30(n) (rand30()%(n)) 
 This is identical to intrand, except it uses a 30 bit random number. 
 
#define thetarand() (acos(1.0-2.0*rand()/RAND_MAX)) 
 This is intended for use in choosing a random θ direction in spherical coordinates.  

The answer is between 0 and π, where 0 is parallel to the z-axis and π is antiparallel. 
 
#define radrand1(r) ((r)*sqrt((float)rand()/RAND_MAX)) 
 This is intended for use in choosing a random radius within a circle of radius r.  In 

combination with a random angle (uniform between 0 and 2π), this yields a random 
point uniformly distributed within the circle. 

 
#define radrand2(r) ((r)*pow((float)rand()/RAND_MAX,0.333333333333)) 
 This is intended for use in choosing a random radius within a sphere of radius r.  In 

combination with a random spherical angle, this yields a random point uniformly 
distributed within the sphere. 

 
#define powrand(xmin,power) 

(xmin*pow(((float)rand()+1.0)/(RAND_MAX+1.0),1.0/(1.0+power))) 
 This returns a random number chosen from a power law distribution with slope m, 

which needs to be <–1.  xmin is typically positive, in which case it is the smallest 
number that can be returned; it can also be negative, which just switches the sign of 
the returned value. 

 
#define powrand30(xmin,power) 

(xmin*pow(((double)rand30()+1.0)/(RAND_MAX_30+1.0),1.0/(1.0+power))) 
 This is identical to powrand, but for 30-bit random numbers.  It is advised for 

accurate work because of the very long tail of the distribution. 
 
unsigned int randomize(); 
 This sets the random number generator seed to the current time and also returns the 

seed that was used. 
 
float binomrand(int n,float m,float s); 
 This adds together n random variables from a uniform density and then scales the 

sum to yield the proper mean and standard deviation.  It’s an easy alternative for a 



true Gaussian density, although not as fast or as well distributed as a look-up table 
and interpolation (see randtable).  It’s also misnamed, since a true binomial 
distribution is the sum of numbers chosen from {0,1}. 

 
int intrandp(int n,float *p); 
 This is similar to intrand, but allows non-uniform probabilities for each integer 

(however, it doesn’t improve on the distribution accuracy for large n values).  p is 
sent in as a list of cumulative probabilities for each integer.  Since they are 
cumulative, p is an increasing list of numbers between 0 and 1, and pn-1 should be 
equal to 1.  Results will always be between 0 and n-1, even with incorrect p values. 

 
int poisrand(float xm); 
 This returns an integer chosen from a Poisson density with mean xm, which will 

typically be in the range xm±√xm.  This routine is copied almost verbatim from 
Numerical Recipies.  A feature which the book routine has and which is kept here is 
that if the routine is called more than once with the same value of xm, it doesn’t 
recalculate some variables, in order to speed up the routine.  Negative values of xm 
are possible but always return a value of 0. 

 
int poisrandD(double xm); 
 Identical to poisrand, but returns a double. 
 
float binomialrand(float p,int n); 
 This returns a random integer (as a float) chosen from a binomial distribution for n 

trials, each with probability p.  It is the number of successes for these n trials.  The 
routine was copied nearly verbatim from Numerical Recipies. 

 
float gaussrand(); 
 This returns a normal deviate with mean 0 and standard deviation 1 using the Box-

Muller transformation described in Numerical Recipies. 
 
void sphererand(float *x,float rad1,float rad2); 
 This returns a 3 dimensional point in x which is uniformly distributed within a 

spherical shell bounded on the inside by rad1 and the outside by rad2 (both 
inclusive).  For a fixed radius, set both rad1 and rad2 to the radius.  The input 
contents of x are ignored although it needs to be allocated to at least size 3. 

 
void sphererandd(double *x,double rad1,double rad2); 
 This is identical to sphererand except that it uses doubles rather than floats. 
 
void Rand_TriPtD(double *pt1,double *pt2,double *pt3,int dim,double *ans); 
 Given a triangle defined by the three Cartesian coordinates pt1, pt2, and pt3, each 

of which has dimensionality dim, this returns in ans the Cartesian coordinates for a 
random point within the triangle using a uniform density.  This function should 
work for all possible inputs with 2 or 3 dimensions.  I’m fairly sure that it yields 
incorrect answers for dim>3. 

 



 If the system is two-dimensional, this function first copies over the x and y values 
for the points such that the new x values are non-decreasing from point 0 to point 1 
to point 2; then it uses the math presented above to find a random location.  It 
should be valid even if x and/or y values equal each other.  If the system is more 
than two dimensional, this finds the dimension that the triangle has the smallest 
range on, puts that at the end, calls itself recursively to find a random point in the 
reduced dimensional space, calculates the remaining coordinate, and swaps back.  
The calculation of the remaining coordinate is also explained above in the math 
section.  It should be reasonably easy to extend the unknown coordinate calculation 
for arbitrary dimensional space, but I haven’t done that yet. 

 
void randtable(float *a,int n,int eq); 
 This fills in a lookup table with entries for quickly converting a uniform density to 

an alternate density, using eq to indicate which density is desired.  n is the number 
of elements in the table.  If eq is 1, the density is a normal density with mean 0 and 
standard deviation 1; returned values range from –erf–1(0.5/n–1) to erf–1(0.5/n–1).  
For example, if rt is a table with 1024 elements, the following expression would 
return a normally distributed random variable with mean mu and standard deviation 
sd: x=mu+sd*rt[rand()&1023], also the range is from –2.33 to 2.33.  Clearly, there 
are only n possible outcomes in this expression, which could be corrected by linear 
interpolation and somewhat slower and lengthier code. 

 
void randtableD(double *a,int n,int eq); 
 Identical to randtable, but for doubles instead of floats. 
 
void randshuffletable(float *a,int n); 
 This shuffles a list of n numbers such that each number is equally likely to end up at 

any position in the list. 
 
void randshuffletableD(double *a,int n); 
 Identical to randshuffletable but for doubles instead of floats. 
 
void showdist(int n,float low,float high,int bin); 
 This is only intended for debugging routines such as binomrand, so it is not a 

general routine.  It plots a bar graph (bin bars that range from the first bar center at 
low to the last bar center at high) showing the distribution of n random variables 
from binomrand(10,0,1) or some other routine; it also displays the actual mean and 
standard deviation. 

 


