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#ifndef __math2_h 
#define __math2_h 
 
/******** useful constants and macros ***********/ 
 
#define PI 3.14159265358979323846 
#define SQRT2 1.41421356237 
#define SQRTPI 1.7724538509 
#define SQRT2PI 2.50662827462 
#define SQUARE(X) ((X)*(X)) 
#define QUADPLUS(A,B,C) ((-(B)+sqrt((B)*(B)-4*(A)*(C)))/(2*(A))) 
#define QUADMINUS(A,B,C) ((-(B)-sqrt((B)*(B)-4*(A)*(C)))/(2*(A))) 
 
/******** integer stuff ***********/ 
 
int iseven(int x); 
int is2ton(int x); 
int next2ton(int x); 
int isintegerD(double x); 
int isinteger(float x); 
int signD(double x); 
int sign(float x); 
int minus1to(int x); 
int intpower(int n,int p); 
double factorialD(int n); 
float factorial(int n); 
double chooseD(int n,int m); 
float choose(int n,int m); 
int gcomdiv(int m,int n); 
 
/********* special functions ***********/ 
 
double sincD(double x); 
float sinc(float x); 
double boxD(double x); 
float box(float x); 
double bessj0D(double x); 
float bessj0(float x); 
double bessj1D(double x); 
float bessj1(float x); 
double gaussD(double x,double mean,double sd); 
float gauss(float x,float mean,float sd); 
double gammalnD(double x); 
float gammaln(float x); 
double gammpD(double a,double x); 
float gammp(float a,float x); 
double erfnD(double x); 
float erfn(float x); 



double erfncD(double x); 
float erfnc(float x); 
double erfccD(double x); 
float erfccD(float x); 
double experfcD(double x); 
double erfcintegralD(double x); 
float erfcintegral(float x); 
double betalnD(double x1,double x2); 
float betaln(float x1,float x2); 
double hermiteD(double x,int n); 
float hermite(float x,int n); 
 
/********* interval stuff ***********/ 
 
float constrain(float x,float lo,float hi); 
double reflectD(double x,double lo,double hi); 
float reflect(float x,float lo,float hi); 
 
/********* inverse functions ***********/ 
 
double inversefnD(double (*fn)(double),double y,double x1,double x2,int n); 
float inversefn(float (*fn)(float),float y,float x1,float x2,int n); 
 
/********* various utilities ***********/ 
 
double quadpts2paramsD(double *x,double *y,double *abc); 
double fouriersumD(double *a,double *b,int n,double l,double x); 
void radialftD(double *r,double *a,double *k,double *c,int nr,int nk); 
void linefitD(double *x,double *y,int n,double *m,double *b); 
 
/********* Hill functions ***********/ 
 
void SetHillParamD(double *hp,double a,double e,double n); 
double HillFnD(double *hp,double x); 
void HillFnComposeD(double *hp1,double *hp2,double *hp12); 
void HillFnComposeNF1D(double *hp1,double *hp2,double *hpf1,double *hpf12); 
 
#endif 
 
Requires: <math.h>,<stdlib.h>, <float.h>, "math2.h" 
Example program: LibTest.c 
 
History: Modified 9/2/98.  Modified again 1/00 and again 8/00.  Works with Metrowerks 

C.  Documentation updated 10/19/01.  Updated 1/8/02.  Fully tested.  Added 
isinteger 2/20/02.  Modified next2ton slightly 10/28/03.  Added QUADPLUS and 
QAUDMINUS and renamed sqr macro to SQUARE 4/16/04.  Added quadpts2params 
9/20/05.  Added signD 10/19/05.  Added fouriersumD 12/16/05.  Added the Hill 
function functions 11/28/06.  Added constrain 4/3/07.  General clean up, added 
several double precision functions, and removed a couple of single precision 
functions 4/21/08.  Modified SetHillParamD and HillFnD 4/21/09. Added bessy0D 



and bessy1D functions 11/13/13.  Added bessi0D function 2/6/17.  Added 
diffgreen2D 2/8/17. 

 
This library file complements the standard math.h library with many useful 

functions.  No effort is made to check for overflow problems (i.e. routines may return 
Inf, or comparable error codes).  A couple routines are copied directly from Numerical 
Recipes.  A routine called bessj1int was removed 10/18/01 since it was inferior to 
bessj1; the inputs and outputs are identical. 

 
 

Summary of math functions 
 

Name Domain Output 
SQUARE (–∞,∞) X2 
QUADPLUS (–∞,∞)3 positive real root of quadratic eqn. if exists, or nan if not 
QUADMINUS (–∞,∞)3 negative real root of quadratic eqn. if exists, or nan if not 
 
iseven (–∞,∞) 1 if even, 0 if odd 
is2ton (–∞,∞) 1 if x is an integer power of 2, 0 if not 
next2ton (–∞,∞) Next higher power of 2, 1 if x=0, or 0 if x<0 
isinteger (–∞,∞) 1 if x is an integer, 0 if not 
sign (–∞,∞)  +1, 0, or –1 for a positive, zero, or negative argument 
minus1to (–∞,∞) (–1)x  
intpower (–∞,∞)2 np, as an integer, p<0 returns 0 
factorial [0,∞) n!, by computation of products; returns 1 for n<0 
choose [0,∞),[0,n] n choose m 
gcomdiv (–∞,∞)2 greatest common divisor using a varient of Euler’s method 
 
sinc  (–∞,∞) sin(x)/x 
box  (–∞,∞) 1 for –1≤x≤1 and 0 elsewhere 
bessj0 (–∞,∞) J0 Bessel function using Numerical Recipes routine 
bessj1 (–∞,∞) J1 Bessel function using Numerical Recipes routine 
bessy0 (0,∞) Y0 Bessel function using Numerical Recipes routine 
bessy1 (0,∞) Y1 Bessel function using Numerical Recipes routine 
bessi0 (-∞,∞) I0 modified Bessel function using Num. Recipes routine 
gauss (–∞,∞) Normalized Gaussian 
gammaln (–∞,∞) Natural log of absolute value of gamma function 
gammp (0,∞),[0,∞) Incomplete gamma fn., P(a,x); –1 for input out of domain 
erfn (–∞,∞) Error function 
erfnc (–∞,∞) Complementary error function 
erfcc (–∞,∞) Complementary error function, with a different method 
experfc (–∞,∞) exp(x2)*erfc(x) 
erfcintegral (–∞,∞) ∫0x erfc(x') dx' 
betaln (–∞,∞)2 Natural log of the beta function 
hermite (–∞,∞),[0,∞) Hermite polynomial by recursion; returns 0 for n<0 
 
diffgreen2D [0,∞),[0,∞) Green’s function for radially symmetric 2-D diffusion 



 
constrain (–∞,∞) Puts x into range between lo and hi 
reflect (–∞,∞) Reflects x into range between lo and hi using recursion 
 
HillFn [0,∞) Hill function with variable x and parameters hp. 
 
 
Defined constants 
 
Name Value Meaning 
PI 3.14159265358979323846 π 
SQRT2 1.41421356237 √2 
SQRTPI 1.7724538509 √π 
SQRT2PI 2.50662827462 √(2π) 
 
 
Macro functions 
 
#define SQUARE(X) ((X)*(X)) 
 Returns X2. 
 
#define QUADPLUS(A,B,C) ((-(B)+sqrt((B)*(B)-4*(A)*(C)))/(2*(A))) 
 QUADPLUS returns the positive real root of the quadratic equation for coefficients A, B, 

and C.  If A and C have the opposite sign, then a positive root exists and is greater 
than 0. 

 
#define QUADMINUS(A,B,C) ((-(B)-sqrt((B)*(B)-4*(A)*(C)))/(2*(A))) 
 QUADMINUS returns the negative real root of the quadratic equation for coefficients A, 

B, and C.  If A and C have the opposite sign, then a negative root exists and is less 
than 0. 

 
 
Integer functions 
 
int iseven(int x); 
 Returns 1 if x is even and 0 if x is odd. 
 
int is2ton(int x); 
 Returns 1 if x is an integer power of 2 (or if x is 0), and 0 if not. 
 
int next2ton(int x); 
 Returns the next higher integer power of two. 
 
int isintegerD(double x); 
int isinteger(float x); 
 Returns 1 if x is an integer and 0 if not. 
 
int signD(double x); 



int sign(float x); 
 Returns sign of x as –1, 0 , or 1. 
 
int minus1to(int x); 
 Returns (–1)x. 
 
int intpower(int n,int p); 
 Returns np, performed with simple multiplication. 
 
double factorialD(int n); 
float factorial(int n); 
 Returns n!, performed with simple multiplication.  If large numbers are wanted, use 

gammaln instead. 
 
double choose(int n,int m); 
float choose(int n,int m); 
 Returns n choose m, as a float or double.  This function uses simple multiplication. 
 
int gcomdiv(int m,int n); 
 Returns the greatest common divisor of m and n.  This always returns a positive 

number.  If either input is 0, then 1 is returned. 
 
Special functions 
 
double sincD(double x); 
float sinc(float x); 
 Returns 1/sin(x), which is 1 at 0. 
 
double boxD(double x); 
float box(float x); 
 Returns 1 for |x| ≤ 1 and 0 for |x| > 1. 
 
double bessj0D(double x); 
float bessj0(float x); 
 Returns J0 Bessel function. 
 
double bessj1D(double x); 
float bessj1(float x); 
 Returns J1 Bessel function. 
 
double bessy0D(double x); 
 Returns Y0 Bessel function. 
 
double bessY1D(double x); 
 Returns Y1 Bessel function. 
 
double bessi0D(double x); 
 Returns the I0 modified Bessel function.  From Numerical Recipes. 
 



double gaussD(double x,double mean,double sd); 
float gauss(float x,float mean,float sd); 
 Returns a Gaussian with area 1, mean mean and standard deviation sd.  sd may not 

be 0 but a negative sd yields a negative Gaussian with area -1. 
 
double gammalnD(double x); 
float gammaln(float x); 
 Returns the natural log of the gamma function.   This uses direct summation for 

integer and half integer values of x, recursion for other negative values, and a 
formula from Numerical Recipes elsewhere.  There is one recursive step for each 
integer for negative values, so large negative values are not recommended.  Result 
is 1/0 for x = 0 or negative integers.  Gamma function is positive everywhere except 
the following open intervals: (–1,0), (–3,–2), (–5,–4), …. 

 
double gammpD(double a,double x); 
float gammp(float a,float x); 
 Returns incomplete gamma function.  Partly from Numerical Recipes. 
 
double erfnD(double x); 
float erfn(float x); 
 Returns the error function, calculated using gammp. 
 
double erfncD(double x); 
float erfnc(float x); 
 Returns the complementary error function, calculated using gammp. 
 
double erfccD(double x); 
float erfcc(float x); 
 Returns the complementary error function, calculated with Chebyshev’s method.  

This was copied verbatim from Numerical Recipies in C, by Press et al., Cambridge 
University Press, Cambridge, 1988.  It works for all x and has fractional error 
everywhere less than 1.2e-7. 

 
double erfD(double x); 
 Returns erf(x), calculated with Chebyshev’s method.  This just returns 1-erfccD(x). 
 
double experfcD(double x); 
 Returns exp(x2)*erfc(x).  This is computed directly (using the erfccD function) for 

|x| < 20 and with a series solution for larger x values.  The series solution was found 
in Carslaw and Jaeger section 2.7 equation 3 (page 71) or Crank eq. 3.39 (page 37), 
and extended with Mathematica.  This equation is the Faddeeva function with an 
imaginary argument, w(ix). 

 
double erfcintegralD(double x); 
float erfcintegral(float x); 
 Returns the integral of the complementary error function from 0 to x, where x may 

be positive or negative.  The equation for this is 
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double betalnD(double x1,double x2); 
float betaln(float x1,float x2); 
 Returns the natural log of the beta function. 
 
double hermiteD(double x,int n); 
float hermite(float x,int n); 
 Returns the n’th Hermite polynomial at x.  This uses recursion. 
 
Green’s functions 
 
double diffgreen2D(double r1,double r2); 
 Returns the Green’s function for radially symmetric 2-dimensional diffusion.  Enter 

r1 and r2 as reduced radii, meaning the radii divided by the rms step length.  This 
computes the function 

 

  grn r, ′r( ) = G1 r1( )G1 r2( ) I0 r1r2( ) = 1
2π

e
− r1

2+r2
2

2 I0 r1r2( )   
 
 where Gσ(x) is the normalized Gaussian with standard deviation σ and I0(x) is a 

modified Bessel function.  See the rxn2Dparam_doc document for more about this 
equation.  It is computed in its own function because it is difficult to compute 
numerically due to the fact that the Gaussians become small exponentially quickly 
while the Bessel function gets big exponentially quickly.  This function combines 
the Bessel function code from bessi0D with the Gaussian computations, leading to a 
numerically stable result. 

 
Interval stuff 
 
float constrain(float x,float lo,float hi); 
 If x is between lo and hi, returns x.  Otherwise, returns closer of lo or hi. 
 
double reflectD(double x,double lo,double hi); 
float reflect(float x,float lo,float hi); 
 Reflects x off of lo and hi as many times as needed until x is within [lo,hi].  

Returns the reflected value of x.  This uses recursion which is slow, so the routine 
could be sped up some.  It is especially slow if x starts far below lo or far above hi.  
The function will hang if lo is not less than hi. 

 
Inverse functions 
 
double inversefnD(double (*fn)(double),double y,double x1,double x2,int n); 
float inversefn(float (*fn)(float),float y,float x1,float x2,int n); 



 Returns the x value at which fn(x) = y, where x is between x1 and x2, which bracket 
the inverse value.  It uses a bisection method with n steps and an algorithm similar 
to one described in Numerical Recipes.  Returned value is on (x1,x2), which may be 
in either order, and has a maximum error of 2–(n+1)(x2–x1).  If there are multiple 
solutions, the one that is found first will be returned.  If there are no solutions, the 
returned value is nearly equal to the endpoint that is closer to the solution (with the 
same error as above). 

 
Various utilities 
 
double quadpts2paramsD(double *x,double *y,double *abc); 
 For the quadratic y=ax2+bx+c, this solves for the a, b, and c parameters from three 

(x,y) pairs.  x is three known x values and y are the respective known y values.  The 
result is returned in the three element vector abc, with a first, then b, and then c.  
The function uses the matrix M where Mij = xi

(2–j), along with its determinant.  The 
determinant is returned; a return value equal to 0 means that the parameters cannot 
be determined and abc was not calculated, and very small return values (positive or 
negative) indicate that there may be large numerical errors in abc.  A zero 
determinant occurs if, and I think only if, two or more x values are identical. 

 
double fouriersumD(double *a,double *b,int n,double l,double x); 
 This calculates the sum of a Fourier series for a function which is periodic on 2l (–l 

to l, or 0 to 2l, or any other interval).  The sum is defined by: 
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 The parameters in the equation are exactly as they are in the function call.  Note that 

b[0] is completely ignored and that the sum goes to n–1 rather than to n, where the 
latter is the standard math convention. 

 
void radialftD(double *r,double *a,double *k,double *c,int nr,int nk); 
 Computes the radial Fourier transform of the function a(r), returning it as c(k).  r, 

which has nr values, is the vector of input radii, and a, which also has nr values, 
lists the values of a(r).  Output values are in the k vector, which has nk values.  The 
output is in c.  The following integral is performed here: 
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 See Arfken and Weber page 860 (problem 15.3.20) or my Cambridge notes p. B-8. 
 
void linefitD(double *x,double *y,int n,double *m,double *b); 
 Fits a straight line to the n points that are listed in x and y, returning the slope and 

intercept in m and b, respectively.  No checks are made that values are reasonable.  



Input values of m and b are ignored.  m and/or b may be set to NULL, if that result isn’t 
wanted. 

 
 
Hill functions 
 
void SetHillParamD(double *hp,double a,double e,double n,double b); 
 Sets vector of Hill function parameters called hp to a, e, n, and b.  No math or 

checking is done, just assignment of a, e, n, and b to the 4-element hp vector, which 
needs to be pre-allocated.  Note that prior versions of this function did not include 
the b term and they also used a 3-element hp vector; all 4 elements are required 
now. 

 
double HillFnD(double *hp,double x); 
 Hill function.  hp is 4-element vector of Hill function parameters with values A, E, 

N, and B respectively, and x is the variable.  Note that prior versions of this function 
used a 3-element vector, although all 4 elements are required now.  The returned 
value follows the Hill equation: 

 

y = A
xN

EN + xN
+ B  

 
void HillFnComposeD(double *hp1,double *hp2,double *hp12) 
 Hill functions H1 and H2 are defined by parameters hp1 and hp2.  Their composition 

is f(x) = H2(H1(x)), which is not a Hill function but is similar to one.  The Hill 
function that shares the same maximum amplitude, x-value at half maximum, and 
log-slope at half-maximum as f(x) has parameters hp12, which are calculated and 
returned by this function.  This function ignores B values. 

 
void HillFnComposeNF1D(double *hp1,double *hp2,double *hpf1,double *hpf12); 
 Composition of Hill functions hp1 and hp2, including negative feedback from 2 to 1, 

to yield a “close” Hill function with parameters hpf12.  The reaction mechanism is 
that the activated product of reaction 2 is a reactant for the inactivation of reaction 
1.  Either, both, or neither hpf1 and hpf2 are returned; for one to be returned send in 
a non-NULL address.  It is assumed, but not checked, that both input n values (hp1[2] 
and hp2[2]) are equal to 1.  This function could be generalized to other input n 
values, but that hasn’t been done yet.  This function ignores B values. 


