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See the document “LibDoc” for general information about this and other libraries.

typedef struct phpt {
int sp;
float *sa;
int fp;
int fs;
float *fa;  } *phptr;

#define MaxIntPar 10

int ODEeuler(void (*eqm)(float *,float *,float *),float *k,int p,float *u,float
tf,float dt,int (*trackfn)(float,int,float *));

int ODErk4(void (*eqm)(float *,float *,float *),float *k,int p,float *u,float
tf,float dt,int (*trackfn)(float,int,float *));

int ODErkas(void (*eqm)(float *,float *,float *),float *k,int p,float *u,float
tf,float dt,int (*trackfn)(float,int,float *));

void EQMsho(float *u,float *k,float *dudt);
void EQMlorenz(float *u,float *k,float *dudt);

phptr phptalloc(int sp,int fp,int fs);
void phptfree(phptr u);
int phptsave(phptr u,char *fnames,char *fnamef);
phptr phptload(char *fnames,char *fnamef);
int ODEFeuler(void (*eqm)(phptr,void *,phptr),void *k,phptr u,float *Dt,float

intpar[],int (*trackfn)(float,phptr,void *),void *trackptr);
int ODEFrk4(void (*eqm)(phptr,void *,phptr),void *k,phptr u,float *Dt,float

intpar[],int (*trackfn)(float,phptr,void *),void *trackptr);
int ODEFrkas(void (*eqm)(phptr,void *,phptr),void *k,phptr u,float *Dt,float

intpar[],int (*trackfn)(float,phptr,void *),void *trackptr);
void EQMFzero(phptr u,void *k,phptr dudt);
void EQMFsho(phptr u,void *k,phptr dudt);
void EQMFdiff(phptr u,void *k,phptr dudt);
void EQMFwave(phptr u,void *k,phptr dudt);
int TKFticker(float t,phptr u,void *tkptr);
int TKFtimeplot(float t,phptr u,void *tkptr);
int TKFshowfield(float t,phptr u,void *tkptr);

/* start of 2004 version */

typedef struct odestruct {
int dim;
int order;
float *dtptr;
float dtsugg;
float dtmax;
float eps;
void *systemptr;
int (*eqm)(void *);
float **state0;



float **state1;
float *scale;
float *k1,*k2,*k3,*k4; } *odeptr;

odeptr allocodestruct(int dim,int order,float *dtptr,void *systemptr,int
(*eqm)(void *));

void freeodestruct(odeptr ode);
int runodestruct(odeptr ode);
int odestructexample(void);

/* end of 2004 version */

First parts written 1/29/97.  Field routines added 6/97; some testing.  Slight additions
1/00.  Reformatted documentation and added a new independent section 6/04, called
‘2004 version’.  Fixed order 5 in 2004 version 9/1/04.

This library is really three parallel libraries, each of which integrates ordinary
differential equations.  Routines without an "F" are designed to work together, and are for
small dimensional phase space (presently set for Pmax=10 dimensions, but easily
enlarged).  Routines with an "F", which stands for "field", are designed for high
dimensional phase space, including fields.  The latter routines are also a little more
general and a little more careful about being proper and checking for errors.  The data
structure struct phpt is only used in the "F" routines.  Routines that start with ODE are
differential equation integrators, ones that start with EQM are some useful equations of
motion, and ones starting with TK are for tracking the results of the integrations.  Routines
in the section called ‘2004 version’ are different yet, and use a data structure called
odestruct, pointed to by odeptr.  The 2004 routines compile very slowly when
maximum compiler optimizations are used.

The notation for the first two sections is largely taken from Stuart and Humphries's
Dynamical Systems and Numerical Analysis while the algorithms are from Numerical
Recipes in C.  The code is similar to that in Numerical Recipes, but mine are a little faster
and seem to me to be simpler.

The "F" routines use the structure struct phpt, pointed to by the type phptr, to
define a point in phase space.  The members sp, fp, and fs are, repectively, the number of
scaler dimensions in phase space, the number of field dimensions, and the size of the
fields.  The members sa and fa are the actual scaler and field arrays.  sa is indexed from 0
to sp-1, while fa is indexed with columns 0 to fp-1 to identify the field and with rows
from 0 to fs-1 to identify the location in the field.  Thus, for example, u->fa[u->fp*(u-
>fs-1)+0] is the last element of the first field of the phptr u.  Memory for struct phpts
are allocated with phptalloc and freed with phptfree.  The former routine returns a
phptr, set up with the sp, fp, and fs members defined (using the input arguments) and
space allocated in the appropriate arrays.  If memory allocation failed, phptalloc returns
a 0.

The 2004 routines use a rather different scheme.  Rather than integrating an ODE
over a long period of time and having the integrator call back to a tracking function, the
new routines are designed for only a single time step.  The idea is that they are just
simply routines that can be called from an existing program rather than a design that a
program needs to be built around.  odestruct, pointed to by a odeptr, is a structure that
contains all the useful information about an ODE, including scratch space for the
integrator.  dim is the number of dimensions of the system of equations, which is the
number of differential equations.  order is the order of the Runge-Kutta integrator, which
is allowed to equal 1 for Euler integration, 2 for mid-point method, 4 for 4th order



Runge-Kutta, or 5 for 5th order Runge-Kutta with adaptive step-sizing.  dtptr is a pointer
to the variable that contains the time step.  For order 5, dtptr is used to make dt equal to
the actual size step that was taken, dtsugg is the suggested size of the next step, dtmax is
the maximum time step allowed, and eps is the absolute maximum error allowed in any
state variable.  systemptr is a pointer to a structure that contains everything that is known
about the system, cast as a void*; it is never used in any of the routines here, but it is
passed on to the relevent function with the equations of motion.  eqm is the function for
the equations of motion, where its only parameter is the system, pointed to by systemptr.
state0 and state1 are dim long lists of pointers, where each pointer points to one of the
time dependent variables.  scale is a list of values that are used to scale the calculated
errors for step size control.  k1 to k4 are dim size vectors for scratch space and are only
allocated as needed.

When the integrator is done with one time step, the variables pointed to by state0
contain the state of the system at the end of the time step, while those pointed to by
state1 contain the state of the system at the beginning of the time step.  While the
integrator is busy, state1 points to the current system values and state0 is supposed to
be returned to the integrator from the equations of motion function with the time
derivative for each variable.  This is made clearer below.  If the odestruct is allocated
with one order value, it is allowable to change the order to a lower value, but the order
may not be raised above the original value because the required memory will not have
been allocated.

To see how to use the routines, it is easiest to follow the example given in the
library code, including the routine odestructexample.  What’s not shown there is that the
scale vector can be useful for improving the quality of step sizing for order 5 integration.
As a default, all scale values are equal to 1.0 to maintain an unscaled absolute error.
Alternatively, values could be set to “typical” values for that state variable to still
maintain absolute errors, but now without focusing on the smallest valued state variables.
Also, scale could be reset at each time step to equal the absolute value of the state
variable to maintain a constant relative error, but one needs to make sure that it is never
zero.

Pre-2004 routines

ODEeuler and ODEFeuler
These use Euler's method of differential equation integration, which is simple but of
low quality.  The non-"F" ODE routines all take in identical arguments.  Going
through them in order, pass in a function name for the equations of motion, a vector
of constant parameters (not used by the integrator, but passed on to *eqm), the
dimension of phase space, the initial conditions (u[0..p-1]), the final time, the time
step, and the name of a function to track the results.  The *eqm function is sent a
point in phase space, the constant vector k, and an uninitialized array in which the
first time derivatives are to be returned.  Note that the time is not sent, so if it is
needed, it needs to be added as another dimension.  If the *eqm function returns a
non-zero value, the integration is stopped.  If you don't want to watch or record the
results as they are produced, making *trackfn a NULL pointer will tell the integrator
to keep going.  Otherwise, *trackfn is sent the time, the dimension of phase space,
and the present point in phase space.  It is called after the first time step, and every
step thereafter up to, but not including tf.  The tracking function should return zero
for stable operation and a non-zero integer to abort the integration.

The arguments to the "F" integrators are similar to those for the other integrators.
Going through them in order, pass in a function name for the equations of motion, a
pointer to the constant parameters for the equations of motion, the starting point in



phase space, a pointer to the total time increment, a set of parameters for the
integrator, the name of a function to track results, and a pointer to any information
needed by the tracking function.  As above, the *eqm function is sent a point in
phase space, the pointer to the constant parameters, and an uninitiallized phptr in
which the gradient is to be returned.  The constant parameters for the equations of
motion, pointed to by k, may be an array of numbers, a struct phpt, or whatever
other data type is expected by the equations of motion.  The parameters to the
integrator could be numerous in principal, but in fact all of the routines written so
far only look at the first element, intpar[0], to get the integration step size (or the
initial step size for ODEFrkas).  The constant MaxIntPar sets the maximum required
size of the intpar array.  Making *trackfn a NULL pointer tells the integrators to
continue until they finish.  Otherwise, they call *trackfn after each step, with the
time, the present point in phase space, and a pointer to any information for the
tracking function.  Again, this last pointer is completely general.  The tracking
function is called after one time step, and then each time step thereafter, up to, but
not including, Dt.  If an integrator is interupted before it finishes, it returns the value
1; otherwise it returns 0.  Regardless of how it terminates, the actual time integrated
is returned as *Dt and the phase space point for that time is returned in u.

ODErk4 and ODEFrk4
These use a fixed step fourth order Runge-Kutta algorithm, which is much better
than Euler's method.  See above for arguments.

ODErkas and ODEFrkas
These use a fifth order Runge-Kutta algorithm with adaptive step sizing.  Thus, the
routines take large steps in smooth areas of phase space and small steps in more
difficult regions.  Step sizing is supposed to work such that the error on each step is
as high as possible, but no more than that taken on the first step, for which the step
size is supplied by the user.  See above for arguments.

EQMsho
This is a set of equations of motion for a simple harmonic oscillator.  It requires one
constant, w2 (store this in k[0]).  The first phase space dimension is the position,
while the second is the velocity.  The equations are: dx/dt = v; dv/dt = –w2x.

EQMlorenz
This contains the Lorenz equations.  The phase space dimensions are x, y, and z,
while the constant parameters are s, r, and b.  Equations are: dx/dt = s(y–x); dy/dt =
rx–y–xz; dz/dt = xy–bz.

phptsave and phptload
Phase points may be saved to or loaded from disk with the routines phptsave and
phptload.  For both routines, the file names may be sent with the fnames and fnamef
arguments, or, if they are set to NULL, the routines ask the user for file names.  The
fnames file is a file of the scalar array and fnamef file is a matrix of the field
elements.  phptsave returns 1 if saving was successful, and 0 otherwise.

EQMFzero
This requires no constant parameters and returns a zero gradient everywhere.

EQMFsho
This contains the equations of motion for a simple harmonic oscillator, inputting w2

in k[0] (cast to a float).



EQMFdiff
This contains the equations of motion for diffusion in the first field (u->fa[0][j])
with diffusion constant k[0].

EQMFwave
This contains the wave equation in the first two fields with c2 from k[0].

TKFticker
This displays the first two scaler parameters as text.

TKFtimeplot
This plots the first scaler parameter as a function of time.

TKFshowfield
This plots the first field, replacing it at each time step.

2004 routines

odeptr allocodestruct(int dim,int order,float *dtptr,void *systemptr,int
(*eqm)(void *));
This allocates an odestruct and returns an odeptr that points to it, assuming
allocation was successful, or NULL if not.  dim is the number of differential equations
(number of time dependent variables), order is the maximum order of integration
that will be used (1, 2, 4, or 5), dtptr is a pointer to the variable that contains the
time step, systemptr is a pointer to a structure that contatins all the relevent
information for the equations of motion function cast as a void*, and eqm is a
pointer to the fuction with the equations of motion.  See below for use advice.  This
function allocates all memory that is required and assigns all structure elements of
the odestruct, except for the pointers in the state0 and state1 lists.  These are left
as all NULLs and need to be set elsewhere.  scale is set to all 1’s if order is 5 and is
left as NULL otherwise.  About eqm: it should use the values in the state1 vector to
calculate the derivatives, which are to be stored in the state0 vector; it should
return 0 for correct operation and 1 for failure.

freeodestruct
This frees an odestruct, including all memory that was allocated using
allocodestruct.  It does not free memory that was allocated elsewhere.

runodestruct
This performs the integration of an odestruct over one time step.  It uses Euler,
Mid-point, fixed step Runge-Kutta, or adaptive step Runge-Kutta, as appropriate.
On input, state0 pointers point to the current state of the system and state1
pointers are ignored.  On output, state1 pointers point to the past state of the
system and state0 pointers point to the new state.  Note that the derivative
information is not set to zero before the equations of motion function is called.  The
eqm function for the equations of motion is supposed to return 0 for correct
operation and any other value for failure; on failure, runodestruct returns the same
error code and otherwise returns 0.



odestructexample
This is an example of the use of the 2004 routines using a simple harmonic
oscillator.  The equations of motion are: dx/dt = v; dv/dt = –w2x–2gv.  g is a damping
term.  According to basic physics, the exact theoretical results are:

x=Ae–gtcos(w1t–f)
v=Ae–gt[–w1sin(w1t–f)–gcos(w1t–f)]
where w1=(w2–g2)1/2

Using order 1 integration, results are way off, with an amplitude that does not
decrease nearly fast enough.  Results are better with order 2 and excellent with
orders 4 or 5.  With order 5, it is important to limit the time step to the natural time
constant of the system, which is w–1.  Because absolute errors are kept below a
threshold, the relative errors become large when absolute values are small, unless a
maximum time step is enforced.


