
Documentation for Spectra.h and Spectra.c
Steven Andrews, © 2003

See the document “LibDoc” for general information about this and other libraries.

#include "string2.h"
#define MAXARG 20

#include "string2.h"
#define MAXARG 20

typedef struct spect {
char name[STRCHAR];
char file[STRCHAR];
char desc[STRCHAR];
char xunit[STRCHAR];
char yunit[STRCHAR];
char color[STRCHAR];
int n;
int cmplx;
float *x;
float *y; } *sptr;

sptr SpectAlloc(char *name,char *file,char *desc,char *xunit,char *yunit);
void SpectFree(sptr s);
int LoadSpect(sptr *spt,char *fname,int xcol,int ycol,int skip);
int SaveSpect(sptr s);
void SpectRange(sptr s,float *xa,float *xb,float *ya,float *yb,int fn);
void TypeSpect(sptr s);
void PlotSpect(sptr s);
int SpectMath(sptr s1,sptr s2,sptr *s3ptr,char *fn,float k);
int SpectMath2(sptr s,sptr *ansptr,float *num,int nn,char *fn,char *fn2);

Requires: <stdio.h>, <stdlib.h>, <string.h>, <math.h>, "math2.h", "Rn.h",
"Cn.h", "Plot.h", "DiskIO.h", "RnSort.h"

Example program: SpectFit.c

Written 9/16/98; moderate testing. Thoroughly proofread 6/99. Slight modification 8/99.
Works with Metrowerks C. Added Hankel transform 1/02. Removed spectrum
equation, added complex flag, and added some error reporting 2/7/02. The updating
is only partially complete, so the new version is Spectra2.c and the original is
unchanged.

This library is designed to be used for spectral fitting and analysis, or for the
processing of similar data (such as time resolved measurements). While it was largely
developed for use with the SpectFit program, it is a general purpose library for the
manipulation of any set of x,y data. All the routines are platform independent with the
exception of PlotSpect, which only works on a Macintosh.

The type struct spect defines a spectrum. The members name, file, desc, xunit,
and yunit, and color are fairly self-explanatory, storing, respectively, the spectrum name,
a file name if it has been saved, a description, the plotting color using the Plot.c codes,
and the units for the x and y values. The first character of the color is all that is used for a

real spectrum; for complex spectra, the first character is used for the real component and
the second character for the imaginary component. n is the number of data points in the
spectrum. cmplx is a flag which is 0 if the y values are real and 1 if they are complex. x
and y are arrays for the data, with n elements each if the complex flag is not set and n
elements in the x array and 2n elements in the y array if the flag is set. In the latter case,
the even y elements are the real components and the odd elements are the corresponding
imaginary values. While there are strings allocated for x and y units, they are not checked
or updated in any of the routines here.

In general, spectra are assumed to have all structure members allocated and in good
order. Also, it is assumed that n is at least 1 and that x and y are allocated, initiallized,
and sorted with increasing x values. Routines here that do not assume that x and y are set
up are SpectAlloc (which returns a spectrum with NULL x and y), SpectFree, TypeSpect,
and PlotSpect. If spectra are properly initiallized, every function should return either a
correct answer or an error code.

SpectAlloc allocates space for a spectrum and initiallizes members as possible, returning
a pointer to the spectrum, or NULL if allocation was unsuccessful. If the input strings
are defined, they are copied into the new spectrum (the input strings may be freed
afterwards if necessary without affecting the spectrum); alternatively, some or all
NULL values may be entered, in which case the spectrum is initiallized with empty
strings. The x and y members of the spectrum are returned as NULL, so they need to
be allocated and assigned elsewhere.

SpectFree frees a spectrum and any data that it might include. If the arrays were already
freed, the pointers should be set to NULL.

LoadSpect loads a real valued spectrum from disk, stored in a table with skip lines of
header, where the x data are read from the xcol column (numbered starting with 1)
and the y data are read from the ycol column. It uses the LoadData3 routine from
DiskIO.c, and so has the same file format requirements. spt points to a spectrum
and should be sent in either pointing to NULL or to a spectrum; in the latter case, the
spectrum will be freed automatically. If the loading worked, the spectrum is
returned in *spt; otherwise *spt is set to NULL and an error code is returned, where
the error code is one of the values listed in the DiskIO.c documentation (possible
values are 0, 1, 2, 4, 5, and 6). If loading works, spectra are returned sorted with
increasing x values.

SaveSpect saves a real or complex spectrum to disk, giving a file with no header and
either a pair of columns for x and y data if the spectrum is real, or three columns for
x, Re(y), and Im(y) if the spectrum is complex. If the spectrum has a file name, it is
used; otherwise the user is asked for a file name. The routine returns one of the
error codes from DiskIO.c.

SpectRange returns the range of the spectrum if fn=0, or the inside of ranges of the
spectrum and xa,xb,ya,yb if fn=-1, or the outside of the ranges if fn=1. If s is
complex, then the spectral y range includes both real and imaginary components.

TypeSpect displays the header of a spectrum on the standard output, as well as the first
and last data points. A NULL spectrum or a spectrum without x and y data is allowed.

PlotSpect plots a spectrum to the graphics window, using Plot.c commands. The color
of the spectrum is the value of the first character of the color string; if s is complex,
the second character of the string is used for the imaginary component. A NULL
spectrum or a spectrum missing x or y data results in nothing plotted.

SpectMath does simple math with spectra. Inputs are the spectra s1 and s2 and the
number k, while the ouput is pointed to by s3ptr. s1 is always required but s2 and k
are only required for certain functions. If s3ptr is sent in pointing to NULL (s3ptr
should not be NULL) a new spectrum is created, otherwise the existing one is
overwritten (be careful not to send in an uninitialized pointer). fn is a string which
identifies the math function to be done. If the procedure is successful, it returns 0

and the output spectrum is set with a blank name and blank file name, and with the
description, units, and color copied from s1. When possible, output data points are
at the s1 point locations. The description is appended with *fn, although units are
not updated. If the procedure fails, an error code is returned, listed below; also, if
s3ptr pointed to NULL, it is returned that way and nothing needs freeing, otherwise
the previous spectrum pointed to by s3ptr was probably changed. It is always
permissible for s1 and s2 to point to a single spectrum, but *s3ptr needs to be
distinct. Sizes of data sets are modified as needed and spectra are linearly
interpolated or extrapolated as needed. Math cannot be done with two spectra in
which only one is complex. Virtually all functions return spectra of the same type
that are entered, the exceptions being complex, real, and imag. Undefined numbers,
such as division by zero or the square root of a negative number using real spectra,
are set to an answer of zero.

*fn s2 or k type returns
copy r,c copy of s1
smooth r smooths s1 with k points on each side
log r,c base 10 log of s1
exp r,c exp(s1)
ln r,c natural log of s1
10^s r,c 10^s1
sqrt r,c square root of s1
s*x or x*s r,c multiplies s1 by its x values
s/x r,c divides s1 by its x values
deriv1, deriv r first derivative of s1
integ k r integral of s1, set to 0 at x=k
deriv2 r second derivative of s1
xderiv1 r x weighted first derivative of s1
xderiv2 r x weighted second derivative of s1
s+k or k+s k r,c s1+k, where k is real
s-k k r,c s1-k, where k is real
k-s k r,c k-s1, where k is real
s*k or k*s k r,c s1*k, where k is real
k/s k r,c k/s1, where k is real
s/k k r,c s1/k, where k is real
s^k k r,c s1^k, where k is real
s*s s2 r,c s1*s2
s/s s2 r,c s1/s2
s+s s2 r,c s1+s2
s-s s2 r,c s1-s2
merge s2 r,c combines s1 and s2, with smooth transition
log x r,c x of s3 is base 10 log of x of s1
ln x r,c x of s3 is natural log of x of s1
exp x r,c x of s3 is exp(x of s1)
10^x r,c x of s3 is 10^(x of s1)
sqrt x r,c x of s3 is square root of x of s1
x+k or k+x k r,c x of s3 is (x of s1)+k
x-k k r,c x of s3 is (x of s1)-k
k-x k r,c x of s3 is k-(x of s1)
x*k or k*x k r,c x of s3 is k*(x of s1)
x/k k r,c x of s3 is (x of s1)/k
k/x k r,c x of s3 is k/(x of s1)
x^k k r,c x of s3 is (x of s1)^k
complex (s2) r converts s1 and s2, if given, to complex

real c real part of s1
imag c imaginary part of s1
fourier k c fourier transform of s1, starting at k
invfourier k c inverse fourier transform of s1, starting at k
ftpower r fourier power spectrum of s1, starting at k
fft k c fast fourier transform of s1, starting at k
invfft k c inverse fft of s1, starting at k
hankel k r hankel transform of s1, oversampled by k
noise k r,c Gaussian noise with std. dev. k
convolve s2 r Convolves s1 with kernal s2

Possible error codes
1 out of memory
6 missing inputs to function
7 command not recognized
8 complex spectra not supported for this function
9 divide by zero
10 only one spectrum is complex
11 incompatible spectra x values
12 real spectra not supported for this function
15 data are not evenly spaced
44 argument out of bounds
999 an impossible situation occurred

For writing more functions, it is helpful to know how the variables are set up
initially. At the start, s3 is set up to be similar to s1, with the same x values, the
same number of points, the same type (complex or not), the same color, with the y
array allocated to the correct size, and with the description updated. Before running
the individual functions, several variables are defined for convenience:

spectrum 1: s1 n x1 y1 cmplx
spectrum 2: s2 n2 x2 y2
spectrum 3: s3 n x3 y3 cmplx

The only one of these variables that is used after running the individual functions is
s3; however, it is still a good idea to preserve these variables in the functions, and
update them if necessary. Also, er and sort are initially 0 and are used,
respectively, to define any error code to indicate that the x vector of s3 needs to be
re-ordered. There are also several generic variables for use as needed, which are: i,
j, i2, f1, f2, f3, v1, v2, sz1, and sz2; none of these are allocated at the beginning or
freed at the end. num may be used to pass numbers to SpectMath2.

SpectMath2 is similar to SpectMath, but does different math and has different input
variables. s is the input spectrum and the answer is returned in a spectrum pointed
to by *ansptr. If ansptr points to a spectrum initially, that spectrum is
automatically freed; alternatively, it may point to a NULL spectrum initially, although
ansptr should not be NULL. fn is the name of the function, fn2 is a string parameter
that modifies the function, num is an array of numbers from 0 to nn, and s is the
input spectrum. More precisely, nn is the number of input numbers; for the
“baseline” function, nn should be set to 0, but num should be allocated for at least 2
values for the output numbers. Using the notation fj for num[j], the functions are:

*fn *fn2 type description
new 1 r spectrum of all 1’s, from f0 to f1, with step size f2

x spectrum with y=x, from f0 to f1, with step size f2
copy r,c copies s, from f0 to f1, optional step size f2
zerofill left r,c expand s by factor f0, filling left with zeros

right expand s by factor f0, filling right with zeros
ends expand s by factor f0, filling ends with zeros

baseline left r baseline correct s to left edge, return f0 as offset
right baseline correct s to right edge, return f0 as offset
ends correct s to ends, return f0 as slope, f1 as offset

unbaseline left r undo left baseline correction, inputting f0
right undo right baseline correction, inputting f0
ends undo ends baseline correction, inputting f0 and f1

mask notch r mask with notches at f0,f2,…, with widths f1,f3…
gauss mask with gaussian at 0 with std. dev. f0
highpass mask with trapezoid with cutoff f0, cutoff width f1
lowpass mask with trapezoid with cutoff f0, cutoff width f1

filter notch r fourier filter with notch mask
gauss fourier filter with gauss mask
highpass fourier filter with highpass mask
lowpass fourier filter with lowpass mask

Possible error codes
1 out of memory
6 missing inputs to function
7 command not recognized
8 complex spectra not supported for this function
9 divide by zero
10 only one spectrum is complex
11 incompatible spectra x values
12 real spectra not supported for this function
13 fn2 not recognized
14 num value out of bounds

new creates a new real spectrum. copy copies a subset of a spectrum, between
values f0 and f1, using either the original data points if f2≤0 or data points evenly
spaced with spacing f2. zerofill makes a new spectrum whose domain is f0 times
as large as the original, filling the extra space with zeros. If f0 is negative, the new
spectrum has the next larger integer power of 2 data points, otherwise f0 needs to be
at least 1. baseline returns a baseline corrected spectrum. unbaseline is the
opposite of baseline, taking in the same inputs that baseline made as outputs.

