
Documentation for RnSort.h and RnSort.c

Steven Andrews, © 2003-2012
See the document “LibDoc” for general information about this and other libraries.

Header file

#ifndef __RnSort_h
#define __RnSort_h

/************************ sorting functions *****************************/

void sortV(float *a,float *b,int n);
void sortVdbl(double *a,double *b,int n);
void sortCV(float *a,float *bc,int n);
void sortVliv(long int *a,void **b,int n);
void sortVoid(void **a,int n,int (*compare)(void*,void*));
int sortinsertVsi(char **strlist,char *str,int *xlist,int x,int n);

/*********************** locating functions *****************************/

int locateV(float *a,float x,int n);
int locateVdbl(double *a,double x,int n);
int locateVli(long int *a,long int x,int n);
int locateVstr(char **a,char *x,int n);

/********************* interpolation functions **************************/

float interpolate1(float *ax,float *ay,int n,int *j,float x);
double interpolate1dbl(double *ax,double *ay,int n,int *j,double x);
float interpolate1Cr(float *ax,float *ayc,int n,int *j,float x);
float interpolate1Ci(float *ax,float *ayc,int n,int *j,float x);
double cubicinterpolate1D(double *xdata,double *ydata,int n,double x);
double cubicinterpolate2D(double *xdata,double *ydata,double *zdata,int nx,int
ny,double x,double y);

/*********************** resampling functions ***************************/

void convertxV(float *ax,float *ay,float *cx,float *cy,int na,int nc);
void convertxCV(float *ax,float *ayc,float *cx,float *cyc,int na,int nc);

/*********************** histogram functions ****************************/

void setuphist(float *hist,float *scale,int hn,float low,float high);
void setuphistdbl(double *hist,double *scale,int hn,double low,double high);
int histbin(float value,float *scale,int hn);
int histbindbl(double value,double *scale,int hn);
void data2hist(float *data,int dn,char op,float *hist,float *scale,int hn);

/******************** event analysis functions **************************/

double maxeventrateVD(double *event,double *weight,int n,double sigma,double

*tptr);

/***************** concentration profile functions **********************/

double *cpxinitializer(int n,double *r,double rlow,double rhigh,double rjump);
double *cpxinitializec(double *r,double *c,int n,double *values,int code);
double cp1integrate(double *r,double *rdf,int n,double rmin,double rmax,int
upperleft);
double cp2integrate(double *r,double *rdf,int n,double rmin,double rmax,int
upperleft);
double cp3integrate(double *r,double *rdf,int n,double rmin,double rmax,int
upperleft);
void cp1diffuse(double *r,double *rdfa,double *rdfd,int n,double rmsstep,double
cminfinity,double cinfinity);
void cp3diffuse(double *r,double *rdfa,double *rdfd,int n,double rmsstep,double
cinfinity);
double cp1absorb(double *r,double *rdf,int n,double rabsorb);
double cp2absorb(double *r,double *rdf,int n,double rabsorb);
double cp3absorb(double *r,double *rdf,int n,double rabsorb);
void cpxaddconc(double *r,double *rdf,int n,double amount,int profile,double
r1,double r2);
void cpxmassactionreact(double *rdfa,double *rdfb,int n,double rate);

#endif

Requires: <math.h>,"Rn.h"
Example program: SpectFit.c, LibTest.c

History: Written 12/98. Works with Metrowerks C. Moderate testing. Added complex

function 2/02. Added some double precision routines 10/02. Added
maxeventrateVD 9/05. Added sortVliv and locateVli 11/29/06. Added setuphist
and data2hist 12/06. Added histbin 4/07. Added setuphisdbl and histbindbl
6/17/07. Quick overhaul 9/27/11; also added cubic interpolation functions. Added
sortVoid 6/3/12. Added locateVstr 10/8/13 and sortinsertVsi 10/14/13.

These routines work on sorted arrays of floats, doubles, or strings, and may be used

in close conjunction with other matrix and vector routines. For virtually all routines, the
sorted array is assumed to be in ascending order.

Some functions are for the use of histograms or other specialized lists of sorted
numbers.

Sorting functions

void sortV(float *a,float *b,int n);
 sortV sorts vector a in order from smallest to largest value. The routine first checks

for a forward or backward pre-sorted vector, and then, if necessary, does a heap sort
using a routine nearly identical to that given in Numerical Recipes. b is rearranged
in the same manner as a, but does not influence the sorting in any way. b may be
either NULL or the same vector as a, if a dual vector is not required.

void sortVii(int *a,int *b,int n);
 sortVii is identical to sortV except that all numbers are integers.

void sortVdbl(double *a,double *b,int n);
 sortVdbl is identical to sortV except that all numbers are in double precision.

void sortCV(float *a,float *bc,int n);
 sortCV is identical to sortV except that the required vector bc is a complex vector,

with 2n elements that alternate real and imaginary components. a is still real.

void sortVliv(long int *a,void **b,int n);
 This is identical to sortV except that a is an array of long integers and b is an array

of void*s. Also, b is required.

void sortVoid(void **a,int n,int (*compare)(void*,void*));
 Sorts a single vector of void*s, entered in a, of which there are n elements. There is

no dual vector. Two elements of a are compared with each other using the compare
function, which needs to return -1 if the first argument is less than the second, 0 if
they are equal, and 1 if the first is greater than the second. This function is
essentially the same as sortV.

Item locating functions

int locateV(float *a,float x,int n);
 locateV locates the largest element of a that is smaller than or equal to x, where a is

a sorted array. It returns the index of that element. If x is smaller than any value in
a, then –1 is returned; if x is larger than any value in a, then n-1 is returned. If
several elements of a are equal to each other and x is either equal to them or is
between their value and the next higher value, then the element of the collection
with the highest index is returned. This routine uses a bisection type routine, which
is almost exactly copied from Numerical Recipes.

int locateVdbl(double *a,double x,int n);
 locateVdbl is identical to locateV except that all numbers are in double precision.

int locateVli(long int *a,long int x,int n);
 This is similar to locateV. Differences are that all numbers are long integers and

the function only returns the index if an exact match is found. Otherwise, it returns
-1.

int locateVi(int *a,int x,int n,int mode);
 Similar to above functions, but for integers. If mode is 0, then the function returns -

1 if x is not found, whereas if mode is 1, then the function returns the largest
element of a that is smaller than or equal to x.

int locateVstr(char **a,char *x,int n,int mode);

 Similar to above functions, but for strings. Also, if mode is 0, then the function
returns -1 if x is not found, whereas if mode is 1, then the function returns the
largest element of a that is smaller than or equal to x.

Interpolation functions

float interpolate1(float *ax,float *ay,int n,int *j,float x);
 interpolate1 does linear interpolation at position x. ax and ay are input x and y

vectors, where the x values are sorted in ascending order, and n is the number of
elements in each vector (minimum of 1). The routine needs the closest smaller x
value. If its index or an index close by, but below it, is known, then send that value
in as *j. If the index is not known, then send in *j as -2 and the routine will locate
it with locateV. Either way, the correct index is returned in *j (identical to
locateV). If multiple elements of ax have the same value: if x equals that value, the
corresponding ay with the highest index is returned, if x is less than them, the one
with the lowest index is used for interpolation, and if x is greater than them, the one
with the highest index is used for interpolation. Here is a typical code fragment
using interpolate1, which takes a sorted data set and rewrites it using a different
set of x values.

 for(j=-2,i=0;i<n2;i++) y2[i]=interpolate1(x1,y1,n1,&j,x2[i]);

double interpolate1dbl(double *ax,double *ay,int n,int *j,double x);
 interpolate1dbl is identical to interpolate1 except that all numbers are in double

precision.

float interpolate1Cr(float *ax,float *ayc,int n,int *j,float x);
 interpolate1Cr is identical to interpolate1 except that the vector ayc is a complex

vector, with 2n elements that alternate real and imaginary components. The
function returns the interpolated value of the real components.

float interpolate1Ci(float *ax,float *ayc,int n,int *j,float x);
 interpolate1Ci is identical to interpolate1Cr except that the function returns the

interpolated value of the imaginary components.

double cubicinterpolate1D(double *xdata,double *ydata,int n,double x);
 Performs one-dimensional interpolation or extrapolation on tabulated data using an

interpolating polynomial. Enter the tabulated x-values in xdata, the tabulated y-
values in ydata, and the sizes of these vectors as n. This function requires n to be at
least 4 and will return -1 if this is not the case. Enter the desired x value in x. This
finds the four data points that are closest to x, calculates the interpolating
polynomial for them, and then calculates and returns the y value that corresponds to
x. The xdata vector does not need to be uniformly spaced, although it must increase
monotonically.

 This function was copied from SurfaceParam.c, interpolate1D. The following text

about a previous version of this function was copied from rxnparam_doc.doc:

Interpolation is done in a few functions here with simple cubic interpolation.

This might be formally identical to the cubic spline algorithm that is described in
Numerical Recipes in C, although it is a completely different implementation and so
might lead to different results. My implementation is probably not as fast for long
lists of input values, but has more transparent code, is fully contained within a
single function, and is probably nearly as fast as their method for only a few input
values.

Consider a input vectors Xi and Yi, which define the known values and the input
value x for which the unknown y is wanted. First, the position of x in the Xi vector
is found, with the four Xi values that surround x are copied over into x0 to x3 such
that x is between x1 and x2. Then, Lagrange’s formula (see Numerical Recipies in
C), is used to define the four polynomial coefficients as:

 z0 =
x − x1() x − x2() x − x3()
x0 − x1() x0 − x2() x0 − x3() = −

x − x1() x − x2() x − x3()
6Δx3

 z1 =
x − x0() x − x2() x − x3()
x1 − x0() x1 − x2() x1 − x3() =

x − x0() x − x2() x − x3()
2Δx3

 z2 =
x − x0() x − x1() x − x3()
x2 − x0() x2 − x1() x2 − x3() = −

x − x0() x − x1() x − x3()
2Δx3

 z3 =
x − x0() x − x1() x − x2()
x3 − x0() x3 − x1() x3 − x2() =

x − x0() x − x1() x − x2()
6Δx3

The first form allows unequally spaced x values, whereas the latter form

assumes constant spacing on x of ∆x. For interpolation on just one axis, the result is

 y = z0y0 + z1y1 + z2y2 + z3y3

It doesn’t matter if the input x value is too close to an edge of the tabulated data

for it to be centered among 4 values, because exactly the same method is done if it
is just one value in from the edge, or if extrapolation is required to go beyond the
edge. For interpolation on two axes, interpolation is done four times on one axis to
find 4 new y values; then it is done once on the other axis with these four y values.
This is fairly obvious if a grid is drawn. While I haven’t proven it, I suspect that the
exact same result is gotten regardless of which axis is interpolated on first.

double cubicinterpolate2D(double *xdata,double *ydata,double *zdata,int nx,int

ny,double x,double y);
 Performs two-dimensional interpolation or extrapolation on tabulated data using an

interpolating polynomial. The two independent variables are listed in the vectors

xdata and ydata, which have lengths nx and ny, respectively. The dependent
variable is the table zdata, which has nx rows and ny columns (i.e. y is the fast-
changing index). zdata needs to be a single array, such that zdata[i*ny+j] is the
element at row i and column j. Enter the desired coordinate in x and y. This finds
the 4x4 grid of xdata and ydata points that surround the desired (x,y) coordinate and
interpolates on both axes to estimate the corresponding z value. If either nx or ny is
less than 4, this returns the error code of -1.

 Internally, this first calculates the polynomial coefficients for x (columns). Then, it

uses these to interpolate a z value for each of the four nearest tabulated y values (i.e.
for each row). Then, it calculates the polynomial coefficients for y and combines
them with the 4 interpolated z values to yield a final interpolated z value, which is
returned.

 This function was copied from SurfaceParam.c, interpolate2D. See discussion

above for cubicinterpolate1D for the method used.

Fitting functions

double fitoneparam(double *xdata,double *ydata,int nlo,int nhi,int

function,double *constant);
 This simple function performs linear least squares fits to data with functions that

have only a single fitting parameter, although potentially several constants. Enter
the x-values of the function in xdata and the y-values in ydata. Enter the indicies of
the data that you want to fit using the nlo and nhi bounds (to fit all of the data, set
nlo to 0 and nhi to the number of elements in the vectors). Data element nlo is
included, while data element nhi is not included. Enter the function code number in
function; the current available functions are listed in the table below. If you want
to include one or more constant parameters in the fitting function that differs from
the defaults listed below, enter it or them in constant. On the other hand, if you
want to use the listed defaults, just enter constant as NULL.

 function function defaults
 1 a+c0 c0 = 0
 2 ax+ c0 c0 = 0
 3 a/x+ c0 c0 = 0

 The math behind this function is based on the “Modeling of Data” chapter of

Numerical Recipies in C. In this case, we are fitting to a single basis function X(xi).
To minimize the function

 χ 2 = yi − a0X xi()⎡⎣ ⎤⎦
2

i=nlo

nhi−1

∑ ,

 we calculate

 α = X xi()⎡⎣ ⎤⎦
2

i=nlo

nhi−1

∑ and β = yiX xi()⎡⎣ ⎤⎦
i=nlo

nhi−1

∑

 and then

 a0 =
β
α

.

Resampling functions

void convertxV(float *ax,float *ay,float *cx,float *cy,int na,int nc);
 convertxV takes a sorted x,y data set in ax and ay and interpolates the data to a

different set of x values, from cx, outputing the result to cy. ax and cx should be
sorted beforehand. This just does what the code fragment above shows, except that
this routine is a little faster and easier to use. Also, it checks first to see if all terms
in cx are equal to those in ax, in which case the data are copied directly. n needs to
be at least 2.

void convertxCV(float *ax,float *ayc,float *cx,float *cyc,int na,int nc);
 convertxCV is identical to convertxV except that ayc and cyc are complex vectors

with 2na and 2nc elements respectively.

Histogram functions

void setuphist(float *hist,float *scale,int hn,float low,float high);
 Sets up arrays for a histogram. hist will contain the histogram data, and has size

hn. scale is the histogram scale, which also has size hn. The histogram will be set
up for the range from low to high, plus a bin at each end for values that are below
low and that are above high. For example, consider 5 bins from 0 to 10 in steps of
2: bin 0 is for (–∞,0), bin 1 is for [0,2), bin 2 is for [2,4), …, bin 5 is for [8,10), and
bin 6 is for [10,∞). This would be setup with low as 0, high as 10, and hn as 7.
Both hist and scale would need to be pre-allocated to size 7. hist would be
returned with all 0s and scale would be returned with the maximum value for each
bin: 0, 2, 4, 6, 8, 10, FLT_MAX.

void setuphistdbl(double *hist,double *scale,int hn,double low,double high);
 Identical to setuphist, but for doubles instead of floats.

int histbin(float value,float *scale,int hn);
 Returns the bin number of a histogram that corresponds to value. scale and hn are

as in setuphist.

int histbindbl(double value,double *scale,int hn);
 Identical to histbin, but for doubles instead of floats.

void data2hist(float *data,int dn,char op,float *hist,float *scale,int hn);

 Takes an unsorted list of dn data values in data and sorts them into histogram bins
in hist. If op is ‘=’, any prior histogram counts are cleared from hist; if op is ‘+’,
these data are added to any prior counts; and if op is ‘-’, these data are subtracted
from any prior counts. There are hn total histogram bins with upper bounds given
with scale, exactly as defined as in setuphist.

Event analysis functions

double maxeventrateVD(double *event,double *weight,int n,double sigma,double

*tptr);
 maxeventrateVD inputs an unsorted vector of event times in event, which has n

elements and has respective weights in weight. It finds the time at which the rate of
weighted events was highest, where this is the time that maximizes ∑i wi/[σ√(2π)]
exp[–(t–ai)2/(2σ2)]. Send in weight equal to NULL if all events are to be weighted
equally. This is a Gaussian smoothing of the delta functions that represent the
events with standard deviation σ = sigma. The rate is returned. If tptr is not input
as NULL, the time of the maximum rate is returned in tptr. Note that the maximum
event rate depends on σ. This scans the whole event list and then does two more
scans over progressively narrower regions. A faster but less reliable algorithm
would use a binary search for the zero of the derivative.

Concentration profile functions

double *cpxinitializer(int n,double *r,double rlow,double rhigh,double rjump);
 Initializes r vector of independent radius values for any dimension system. Enter r

with NULL if memory should be allocated or with an existing vector if it should be
overwritten. Returns r, or NULL if memory could not be allocated. r is set up with n
evenly spaced values, of which the first value, r[0], equals rlow and the last one,
r[n-1], is approximately equal to rhigh. If rjump is between rlow and rhigh, this
function adds extra points around rjump to enable high precision around a function
discontinuity. The result is symmetric about rjump, but does not include rjump.
This symmetry was required for studying 1-D adsorption. In this case, the last point
is roughly but not exactly equal to rhigh. To disable this extra precision, set rjump
larger than rhigh; in this case, the last point will exactly equal rhigh.

 For example, if one is analyzing a 3-D Smoluchowski reaction system with binding

radius of 1, then a typical function call would be
cpxinitializer(200,NULL,0,10,1);.

 This function was modified from code in rxnparam.c, rdfmaketable.

double *cpxinitializec(double *r,double *c,int n,double *values,int code);
 Initializes concentration vector, c, for any dimensional system. Enter c with NULL if

memory should be allocated or with an existing vector if it should be overwritten.

Returns c or NULL if memory could not be allocated. Enter r with the radius values,
n with the number of data points, values with the values listed below, and code with
the desired initialization type.

 code result
 0 c[i] = 0 for all i
 1 c[i] = values[0] for all i
 else same as code of 0

double cp1integrate(double *r,double *rdf,int n,double rmin,double rmax,int

upperleft);
 Integrates a 1-dimensional concentration profile, in rdf with r-values in r, from

rmin to rmax. The trapezoid rule is used. The integral is returned. If upperleft is 1
(and rmax is less than r[n-1]), the sum includes only the upper left triangle of the
last trapezoid and this last trapezoid extends past rmax to the next tabulated data
point. rmin and rmax can be any finite values, including negative values, with rmin
> rmax, etc. If one or both limits are outside of the tabulated r-values, then the
function is assumed to be constant between these values and the nearest tabulated r-
value. If rmin and/or rmax do not equal a tabulated r-value, then the integral
includes the correct fraction of the end trapezoids.

 The trapezoid rule is simple in this one-dimensional case. The area of the trapezoid

that has r-values from r0 to r1, and respective heights f0 and f1, is

 A =
f0 + f1
2

r1 − r0()

 For each trapezoid, the function calculates r0, f0, r1, and f1. For terminal trapezoids

that are between the tabulated points j–1 and j, linear interpolation is used with the
equation

 y = yj−1 + yj − yj−1() r − rj−1rj − rj−1

 For the last trapezoid if upperleft is 1, then the area is simply

 A =
f0
2
r1 − r0()

 Complications arise in the code because it allows rmin and rmax to both be between

the same pair of r-values (in same trapezoid), and/or to be above or below all of the
r-values.

double cp2integrate(double *r,double *rdf,int n,double rmin,double rmax,int

upperleft);

 Integrates a 2-dimensional concentration profile, in rdf with r-values in r, from
rmin to rmax. The trapezoid rule is used. The integral is returned. If upperleft is 1
(and rmax is less than r[n-1]), the sum includes only the upper left triangle of the
last trapezoid and this last trapezoid extends past rmax to the next tabulated data
point. rmin and rmax can be any non-negative values, including with rmin > rmax.
If one or both are outside of the tabulated r-values, then the function is assumed to
be constant between these values and the nearest tabulated r-value. If rmin and/or
rmax do not equal a tabulated r-value, then the integral includes the correct fraction
of the end trapezoids.

 Integration uses a circular version of the trapezoid rule: at positions r0 and r1, the

function f has values f0 and f1, leading to the linear interpolation

 f =
r − r0() f1 + r1 − r() f0

r1 − r0

A = 2πrf r()dr

r0

r1

∫

=
π
3
r1 − r0() f0 2r0 + r1() + f1 2r1 + r0()⎡⎣ ⎤⎦

 For the last trapezoid if upperleft is 1, then the area is

 A ==
π
3
r1 − r0() f0 2r0 + r1()

 This function is identical to cp1integrate, except for this 2-D trapezoid calculation.

double cp3integrate(double *r,double *rdf,int n,double rmin,double rmax,int

upperleft);
 Integrates a 3-dimensional concentration profile, in rdf with r-values in r, from

rmin to rmax. The trapezoid rule is used. The integral is returned. If upperleft is 1
(and rmax is less than r[n-1]), the sum includes only the upper left triangle of the
last trapezoid and this last trapezoid extends past rmax to the next tabulated data
point. rmin and rmax can be any non-negative values, including with rmin > rmax.
If one or both are outside of the tabulated r-values, then the function is assumed to
be constant between these values and the nearest tabulated r-value. If rmin and/or
rmax do not equal a tabulated r-value, then the integral includes the correct fraction
of the end trapezoids.

 Integration uses a spherical version of the trapezoid rule: at positions r0 and r1, the

function f has values f0 and f1, leading to the linear interpolation

 f =
r − r0() f1 + r1 − r() f0

r1 − r0

A = 4πr2 f r()dr
r0

r1

∫

=
4π
r1 − r0

f1 − f0() r14 − r04()
4

+
r1 f0 − r0 f1() r13 − r03()

3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= π f1 − f0() r1 + r0() r12 + r02() + 4π3 r1 f0 − r0 f1() r12 + r1r0 + r02()

 For the last trapezoid if upperleft is 1, then the area is

 A == π − f0() r1 + r0() r12 + r02() + 4π3 r1 f0() r12 + r1r0 + r02()

 This function is identical to cp1integrate, except for this 3-D trapezoid calculation.

void cp1diffuse(double *r,double *rdfa,double *rdfd,int n,double rmsstep,double

cminfinity,double cinfinity);
 Diffuses a concentration profile, in rdfa, over a fixed time step, returning the result

in rdfd. r is the vector of radius values and n is the number of elements in r, rdfa,
and rdfd. rmsstep is the mean diffusion distance during this time step, which
equals (2D∆t)1/2, where D is the diffusion coefficient and ∆t is the time step. This
function assumes that all input rdf values below the lowest tabulated value equal
cminfinity and all input rdf values above the highest tabulated value equal
cinfinity.

 This integrates the product of rdfa and the Green’s function for simple diffusion to

implement diffusion. The equation for the integral is:

 d r() = a ′r()grn r, ′r()d ′r
−∞

∞

∫

 grn r, ′r() = Gs r − ′r()

 Gs r() = 1
s 2π

exp −
r2

2s2
⎛
⎝⎜

⎞
⎠⎟

 For r’ < r[0], the integral is

 C−∞ ⋅grn r, ′r()d ′r
−∞

r0

∫ =
C−∞

2
erfc r − r0

s 2
⎛
⎝⎜

⎞
⎠⎟

 For r[0] ≤ r’ ≤ r[n-1], the integral is performed with the trapezoid rule, as shown

in cp1integrate. For r’ > r[n-1], the integral is

 C∞ ⋅grn r, ′r()d ′r
rn−1

∞

∫ =
C∞

2
1+ erf r − rn−1

s 2
⎛
⎝⎜

⎞
⎠⎟

void cp3diffuse(double *r,double *rdfa,double *rdfd,int n,double rmsstep,double

cinfinity);
 Diffuses a concentration profile, in rdfa, over a fixed time step, returning the result

in rdfd. r is the vector of radius values and n is the number of elements in r, rdfa,
and rdfd. rmsstep is the mean diffusion distance during this time step, which
equals (2D∆t)1/2, where D is the diffusion coefficient and ∆t is the time step. This
function assumes that all input rdf values below the lowest tabulated value equal
rdfa[0] and that the input rdf approaches cinfinity on the high side according to
the extrapolation function cinfinity+a2/r, where this function fits a2 to the final
10% of the data.

 This integrates the product of the radial distribution function with the Green’s

function for radially symmetric diffusion. The equation for this integral is

 d r() = 4π ′r 2a ′r()grn r, ′r()d ′r
0

∞

∫

 grn r, ′r() = 1
4πr ′r

Gs r − ′r() −Gs r + ′r()⎡⎣ ⎤⎦

 Gs r() = 1
s 2π

exp −
r2

2s2
⎛
⎝⎜

⎞
⎠⎟

 This function scales input data in a couple of ways before processing it, which both

simplifies the function some and should improve its accuracy. First, all values with
length units (r, r’, a2, etc.) are divided by s (rmsstep) to give unitless results.
Second, the input rdf is offset by its local value and then divided by C∞ to make it
unitless as well and, moreover, to reduce round-off errors. These scalings are
removed as the output rdf is calculated so as to remove their effects. With the
scalings, the equations are:

 d r() = a r() + C∞ 4π ′r 2 a ′r() − a r()
C∞

grn r, ′r()d ′r
0

∞

∫

grn r, ′r() = 1
4πr ′r

G1 r − ′r() −G1 r + ′r()⎡⎣ ⎤⎦

=
1

4π 2π r ′r
exp −

r − ′r()2
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− exp −

r + ′r()2
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

 Consider the latter half of the function first, where rr = r[i]/rmsstep = r/s > 0. The
first trapezoid of the integral goes from r0 = r’/s = 0 to r1 = (r’+dr)/s = r[0 or
1]/rmsstep. Because r’ = 0, the Green’s function is

 grn r,0() = 1
2π 2π

exp −
r2

2
⎛
⎝⎜

⎞
⎠⎟

 Subsequent trapezoids follow the basic equations shown previously. The final

portion of the integral is

 4π ′r 2
C∞ − a2

′r
⎛
⎝⎜

⎞
⎠⎟ − a r()

C∞

grn r, ′r()d ′r
r1

∞

∫

 This is calculated in my Cambridge notes p. B-7.61, using unscaled parameters, as

4π ′r 2 C∞ +
a2
′r

⎛
⎝⎜

⎞
⎠⎟
grn r, ′r()d ′r

r1

∞

∫

= 4πC∞σ
2r1grn r,r1() + C∞

2
erfc r1 − r

σ 2
+ erfc r1 + r

σ 2
⎛
⎝⎜

⎞
⎠⎟
+
a2
2r

erfc r1 − r
σ 2

− erfc r1 + r
σ 2

⎛
⎝⎜

⎞
⎠⎟

= C∞ 4πr1grn r,r1() + 1
2
erfc r1 − r

2
+ erfc r1 + r

2
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ +

a2
2r

erfc r1 − r
2

− erfc r1 + r
2

⎛
⎝⎜

⎞
⎠⎟

 The final equality assumes σ = 1.

 Next, move on to the first half of the function, which is executed only for rdfd[0]

and only if r[0] = 0. This portion of the function is just like the latter portion,
except that the Green’s functions incorporate the fact that r = 0 here. The Green’s
function could be calculated for the first trapezoid where r’ = 0 (it equals (2π)-3/2),
but it isn’t because it’s irrelevant. This is because f1 ~ rdfa[0]-rdfa[i], which
equals 0. For subsequent trapezoids, the Green’s function is

 grn 0, ′r() = 1
2π 2π

exp − ′r 2

2
⎛
⎝⎜

⎞
⎠⎟

 The final portion of the integral is

 4π ′r 2 C∞ +
a2
′r

⎛
⎝⎜

⎞
⎠⎟
grn 0, ′r()d ′r

r1

∞

∫ = 4π C∞
r1
σ
+
a2
σ

⎛
⎝⎜

⎞
⎠⎟
grn r,r1()σ 3 + C∞erfc

r1
σ 2

 This is also from my Cambridge notes, p. B-7.61. This includes a correction made
9/29/11 that was not in the original rxnparam.c file due to a mathematical mistake.
Before, I left out the a2 term. It also includes a small equation fix due to its being
entered incorrectly before. These prior mistakes are unlikely to affect the prior
results due to the fact that this portion of the integral carries essentially 0 area.

double cp1absorb(double *r,double *rdf,int n,double rabsorb);
 Integrates the rdf from r[0] to rabsorb (using the upper left final trapezoid

method), sets all rdf points up to rabsorb equal to 0, and returns the integral.

double cp2absorb(double *r,double *rdf,int n,double rabsorb);
 Integrates the rdf from 0 to rabsorb (using the upper left final trapezoid method),

sets all rdf points up to rabsorb equal to 0, and returns the integral.

double cp3absorb(double *r,double *rdf,int n,double rabsorb);
 Integrates the rdf from 0 to rabsorb (using the upper left final trapezoid method),

sets all rdf points up to rabsorb equal to 0, and returns the integral.

void cpxaddconc(double *r,double *rdf,int n,double amount,int profile,double

r1,double r2);
 Adds (or subtracts) concentration from a concentration profile in rdf. The result

depends on the profile code.

 profile behavior
 0 adds amount to every rdf value
 1 adds amount to every rdf value with r[i] < r1
 2 adds amount to every rdf value with r[i] ≥ r1
 3 adds amount to every rdf value with r1 ≤ r[i] < r2

void cpxmassactionreact(double *rdfa,double *rdfb,int n,double rate);
 Performs mass action bimolecular reactions on the concentrations in rdfa and rdfb,

using rate rate. This function is very simple. At each radius value, it subtracts
rate*rdfa[i]*rdfb[i] from both rdfa[i] and rdfb[i]. To use this function, rate
should be your rate constant times the time step.

