
Documentation for Quantum.h and Quantum.c
Steven Andrews, © 2003

See the document “LibDoc” for general information about this and other libraries.

float psiHO(float x,int n,float k,float m);
complex Bracket(float *psib,float *psik,float *xr,int n);
float NormalKet(float *psi,float *xr,int n);
complex Hamiltonian(float *psib,float *v,float *psik,float *xr,int

n,float mass);
complex Dipole(float *psib,float *psik,float *xr,int n,float q);
void EQMFschrod(phptr u,void *k,phptr dudt);
int TKFplotpsi(float t,phptr u,void *tkptr);
float *TimeEvolve(float *psi,float *ur,float m,float *xr,int n,float Dt);
int TKFdipcorr(float t,phptr u,void *tkptr);
void DipCorr(float *psib,float *psik,float *ur,float m,float q,float

*xr,int n,float Dt,float *dip);
float EigenketAHO(float *xr,float *ur,float *psi,int n,float k,float m);
sptr DipTransform(float *dip,float dt,int nt,float wmin);

Requires: <math.h>, <stdio.h>, "dynsys.h", "Plot.h", "Cn.h", "math2.h",
"Rn.h", "Constants.h", "random.h", "Spectra.h", "Quantum.h"

Example program: VSEsim2.c

Written 1/00. Routines have been moderately tested. Works with Metrowerks C.

These routines are for numerical computations of quantum mechanics, using
wavefunction representations. Many functions use wavefunctions called psi,
psib, or psik, where b and k stand for bra and ket wavefunctions; these are all
complex vectors, using the Cn.c complex style. They also always require xr to be
a real vector of corresponding x values and n to be the number of real values in xr
and the number of complex values in psi. Where units are required, all functions
here use the small SI unit convention, used in Constants.h.

psiHO is the normalized harmonic oscillator wavefunction equation, where x
is the position, n is the energy level (n is an integer ≥0), k is the force constant,
and m is the mass.

Bracket does a Dirac bracket computation, <psib|psik>, returning the result.
Normalket both normalizes a ket and returns the real factor by the wavefunction
was multiplied. Hamiltonian computes the hamiltonian bracket, <psib|H|psik>,
where H is –h’2/2mass ∂2/∂x2 + v(x). Dipole computes the dipole bracket, for
either state or transition dipole moments, <psib|m|psik>, where m=qx and q is the
particle charge.

TimeEvolve, EQMFshrod, and TKFplotpsi are all used for integrating
Schrödinger’s equations of motion for a particle in a one dimensional potential,
using the dynsys.c integrators and other routines. In general, only TimeEvolve
needs to be called from externally, although it may need some tinkering to get the
desired output format. Call it with ur as the potential function (identical to v in
Hamiltonian), m as the particle mass, and Dt as the amount of time to be evolved.
These routines assume the xr vector is uniformly spaced, although it would be
easy to generalize if desired. EQMFshrod takes in a wave function, as a field
dependent phase point, and outputs its time derivative, using the collection of
parameters in k for constants and for work space. TKFplotpsi plots the complex

wavefunction every 1 fs, showing the real part in black and the imaginary part in
red. One trick these routines use to reduce unneccessary rotations of the
wavefunction, which is generally irrelevent to the user, is to subtract the
expectation energy from the input potential and then separately keep track of the
overall phase factor using the first scalar element of the phase point structure.
Here’s the actual equation used by EQMFschrod:

∂y’/∂t = –ih’/2m ∂2/∂x2 y’ + i/h’ [V(x)–<y0H|y0>]y’

where y’ is the wavefunction, minus the overall phase factor, and y0 is the initial
wavefunction.

DippCorr is very similar to TimeEvolve, but it outputs a complex dipole
correlation function, using the assumption that the bra is an eigenfunction of the
potential. It uses TKFdippcorr to compute the correlation function during the
integration. The result function, dip, needs to be pre-allocated before DipCorr is
called, and it needs to be Dt complex elements in size (i.e. 2*Dt). Here’s some
math to show what it does, and how that was derived:

C(t) = <yb|m(t)m(0)|yk>
= <yb|U†(t)mU(t)m|yk>
= q2 [<yb|U†(t)]x[U(t)(x|yk>)]
= q2/Nxk exp(–iwbt) <yb|x[U(t)(Nxkx|yk>)]

Thus, the normalized wavefunction, defined as x times the input ket, is time
evolved using EQMFschrod, and the dipole correlation function is determined each
femtosecond using this equation.

DipTransform inputs a complex dipole correlation function, the time step
between each data point, the number of data points, and the minimum frequency,
and returns a spectrum for it.

EigenketAHO uses the variational principle and a random search method to
find the lowest energy eigenket for an anharmonic oscillator. It does this by
adding the optimal amounts of many higher energy harmonic oscillator
wavefunctions to the harmonic oscillator ground state wavefunction.

