
Documentation for Geometry.h and Geometry.c

Steven Andrews, © 2006-2015

Description

These functions do a variety of things that are useful for 1-D, 2-D, and 3-D

geometry manipulations. A few functions do n-D geometry, but those are rare. Its sole
current use is in Smoldyn.

Functions do not change input data arrays. Output arrays are written to but never
read from. It is often permissible to use the same input array for multiple inputs, but
every output array needs to be distinct from each other, and from each input array.

In general, functions include all boundaries as part of the region when testing
whether a point is in a region or not, or whether two regions overlap. An axis-aligned
bounding box, called an aabb, has its low corner (xmin,ymin,zmin) at bpt1 and its high corner
(xmax,ymax,zmax) at bpt2.

Dependencies

Geometry.h
math2.h

History

2/06 Started.
12/06-2/07 Major rewrite and additions; included in this was a complete switch from

floats to doubles.
9/3/07 Added Center functions.
10/31/07 Added some nearest functions.
1/12/09 Added some area functions.
3/2/09 Added several nearest functions.
3/22/10 Added Geo_LineXaabb and fixed a bug in Geo_CylisXaabb3.
3/8/11 Fixed Geo_NearestTriPt and Geo_NearestTrianglePt, in which they didn’t

test nearest corner points correctly.
6/24/11 Added Geo_InsidePoints2 and Geo_InsidePoints3.
4/11/12 Added Geo_TriArea3D.
12/~15/12 Ye Li added Geo_Area3D to library. I improved it to use a more stable

algorithm.
7/17/12 Added unit vector functions: Geo_TriUnitVects, Geo_SphereUnitVects,

Geo_CylUnitVects, and Geo_DiskUnitVects.
5/10/13 Fixed a bug in Geo_Cyl2Rect.
7/20/15 Improved documentation.
8/15 Wrote Geo_LineExit... functions
9-10/15 Added EPSILON, added functions that use edge normals
1/8/16 Fixed a bug in Geo_NearestTrianglePt2
3/10/16 Replaced EPSILON with margin input in some cases

3/18/16 Added Geo_SphereReflectSphere.
4/11/16 Added Geo_NearestAabbPt
7/19/19 Minor bug fix in Geo_CylisXaabb3

Bugs

Several of the functions that check crossings of 3-D objects with others (aabbs in
particular) ignore potential separation planes, so they report crossings when there aren’t
any. These need to be fixed. As it is, these functions can return false positives (they
report non-existent crossings) but they never return false negatives (they never ignore a
crossing that actually exists).

Note that most functions do not work correctly with values that are close to DBL_MAX
because they can’t do math with these numbers without running into errors.

Math

Several functions use the cross-product of two vectors. As a reminder, c = a×b is:

 cx = aybz − azby
 cy = azbx − axbz
 cz = axby − aybx

The functions that test whether two objects intersect often make use of the

separating axis theorem. However, they also often use my own methods. Here is my
understanding of the separating axis theorem. Consider two convex polygons, in 2-D. A
line segment is included as well, where this can be seen as a two-sided polygon with 0
area. If the objects do not cross, then there must a be at least one infinite line that
separates them. One of these lines will be parallel and adjacent to one of the sides of one
of the polygons. To check for crossing, (1) choose a polygon edge on object A, (2) find
its outward normal, which does not have to normalized, (3) project a vertex of the test
edge onto this normal by taking the dot product of the vertex and the normal vector, (4)
project all vertices of polygon B onto this normal in the same way, (5) the objects do not
cross if all projected values of object B are larger than the projected value of the test
edge. Repeat for all edges of both objects; if all projections fail, then the objects must
cross. If two edges are parallel, they will have opposite normal vectors and some steps
can be saved. There are faster methods, but the one listed should work.

In three dimensions, if two convex polyhedra do not cross, then there must be an
infinite plane that separates them. Before, I thought that non-crossing polyhedra
necessarily implied a separating plane that is parallel to one of the faces on one of the
objects. Now I see that that is sufficient to prove separation, but that other potential
separating planes need to be checked as well. Other planes to test are those that are
parallel to edges, including one edge from A and one vertex from B and vice versa.

Code documentation

Center functions

void Geo_LineCenter(double **point,double *cent,int dim);
 Returns the center of the line for which the two ends are defined as

point[0][coordinate] and point[1][coordinate]. This works for all dimensionalities
and simply returns the mean of the point[0] and point[1] vectors.

void Geo_RectCenter(double **point,double *cent,int dim);
 Returns the center coordinates of a rectangle. The rectangle corners are defined by

point[corner][coordinate] and the result is returned in cent. dim is the
dimensionality of space, not of the surface. If dim is 1, then the “rectangle” is really
a point with only one “corner” and one coordinate; if dim is 2 then the rectangle is
really a line with 2 corners (the two ends) and two coordinates each; if dim is 3 then
the rectangle is a genuine rectangle with 4 corners that have three coordinates each.
Results are undefined for other dim values.

void Geo_TriCenter(double **point,double *cent,int dim);
 This returns the center coordinates of a triangle, where the triangle vertices are

defined by point[vertex][coordinate] and the result is returned in cent. dim is the
dimensionality of space, not of the surface. If dim is 1, then the “triangle” is really a
point with only one vertex and one coordinate; if dim is 2 then the triangle is really a
line with two vertices (the two ends) and two coordinates each; and if dim is 3 then
the triangle is a genuine triangle with 3 vertices that have 3 coordinates each.
Results are undefined for other dim values.

Normal functions

double Geo_LineNormal(double *pt1,double *pt2,double *ans);
 Finds the 2-D unit normal for line segment that goes from pt1 to pt2 (all 2-D) and

puts it in ans. The result vector is perpendicular to the line segment and points to
the right, for travel from pt1 to pt2. If pt1 and pt2 are equal, the unit normal points
towards the positive x-axis. Returns the length of the line segment from pt1 to pt2.

double Geo_LineNormal2D(double *pt1,double *pt2,double *point,double *ans);
 Identical to Geo_LineNormal3D, except that this is for a 2-D system. The returned

vector is either identical to or the negative of that which is returned by
Geo_LineNormal. This returns the perpendicular distance between the line and the
point, and can handle multiple points being equal to each other.

double Geo_LineNormal3D(double *pt1,double *pt2,double *point,double *ans);
 Finds the 3-D unit normal for line that includes pt1 and pt2, and that includes the

point point, and puts it in ans. The result vector is perpendicular to the line.
Returns the perpendicular distance between the line and point. To decrease round-
off error, this function calculates the result using pt1 as a basis point, and then
recalculates the result using the new point. If pt1 and pt2 are the same, this returns
the normalized vector from pt1 to point. If point is on the line that includes pt1

and pt2, this returns the perpendicular unit vector that is in the x,y-plane and that
points to the right of the projection of the line in the x,y-plane, if possible; if not, it
returns the unit x-vector which, again, is perpendicular to the line.

double Geo_LineNormPos(double *pt1,double *pt2,double *point,int dim,double

*distptr);
 Given the line that includes points pt1 and pt2, this considers the normal of this line

that goes to point. The position of the intersection between the normal and the line
is returned, where it is scaled and offset such that pt1 is at 0 and pt2 is at 1. The
unscaled length of the normal segment, from the intersection to point, is returned in
distptr, if that pointer is not sent in as NULL. dim is the dimensionality of the
system, which can be any positive value.

double Geo_TriNormal(double *pt1,double *pt2,double *pt3,double *ans);
 Finds the 3-D unit normal for the triangle that is defined by the 3-D points pt1, pt2,

and pt3 and puts it in ans. If one looks at the triangle backwards along the unit
normal, the three points show counterclockwise winding; i.e. the right-hand rule for
the points in sequence yields the direction of the unit normal. The triangle area is
returned. If the area is zero, ans is returned in the x,y-plane. This finds the normal
and the area using the cross-product of the first two triangle edges.

double Geo_SphereNormal(double *cent,double *pt,int front,int dim,double *ans);
 Returns the unit normal vector from the sphere center at cent to the point at pt.

Enter front as 1 for an outward normal and -1 for an inward normal. dim is the
system dimensionality, which can be any positive integer. The result is returned in
ans and the distance between cent and pt is returned by the function.

Unit vector functions

double Geo_UnitCross(double *v1start,double *v1end,double *v2start,double

*v2end,double *ans);
 Computes the cross product between the vector that goes from v1start to v1end and

the vector that goes from v2start to v2end, then normalizes this cross product to
unit length and returns it in ans. Everything is assumed to be in 3D. The length of
the unnormalized answer vector is returned directly. If this length result is 0,
meaning that the two input vectors were parallel, then 0 is returned and the vector in
ans is set to (0,0,0). If either or both of the input vectors starts at the origin, then
enter the start value as NULL.

double Geo_TriUnitVects(double *pt1,double *pt2,double *pt3,double

*unit0,double *unit1,double *unit2);
 Returns the unit vectors of a 3-dimensional triangle that has its corners at pt1, pt2,

and pt3, in vectors unit0, unit1, and unit2. The first is the triangle normal, the
second is parallel to the edge from pt1 to pt2, and the third is orthogonal to the
previous two, using a right-handed coordinate system. Returns the triangle area.
Behavior is undefined if the area equals zero.

double Geo_SphereUnitVects(double *cent,double *top,double *point,int
front,double *unit0,double *unit1,double *unit2);

 Returns the unit vectors of a 3-dimensional sphere that has its center at cent and its
top (i.e. where θ=0, in a spherical coordinate system) at top, for the point point.
Enter front as 1 for an outward normal and -1 for an inward normal. Results are
returned in unit0, unit1, and unit2. The first unit vector is the local sphere normal,
the second points from point towards top, but in the local plane of the sphere at
point, and the third is orthogonal to the previous two, using a right-handed
coordinate system. Returns the distance from the center to point. Behavior is
undefined if the distance from cent to top is zero, or the distance from cent to point
is zero However, it’s ok for point and top to equal each other.

double Geo_CylUnitVects(double *pt1,double *pt2,double *point,int front,double

*unit0,double *unit1,double *unit2);
 Returns the unit vectors of a 3-dimensional cylinder that has its axis along the line

from pt1 to pt2, for the reference point point. Enter front as 1 for an outward
normal and -1 for an inward normal. Results are returned in unit0, unit1, and
unit2. The first unit vector is the local cylinder normal, the second is parallel to the
cylinder axis, and the third is orthogonal to the previous two using a right-handed
coordinate system. Returns the distance from the axis to point. Behavior is
undefined if this distance, or if the distance from pt1 to pt2, equals zero.

double Geo_DiskUnitVects(double *cent,double *front,double *point,double

*unit0,double *unit1,double *unit2);
 Returns the unit vectors of a 3-dimensional disk that has its center at cent and is

oriented perpendicular to the unit vector in front, for the reference point point.
Results are returned in unit0, unit1, and unit2. The first unit vector is simply
copied over from front, the second is in the direction from cent to point, and the
third is orthogonal to the previous two using a right-handed coordinate system.
Returns the distance from cent to point. Behavior is undefined if this distance is
zero.

Length, area functions

double Geo_LineLength(double *pt1,double *pt2,int dim);
 Returns the length of the line that extends from pt1 to pt2, and its dimensionality in

dim.

double Geo_TriArea2(double *pt1,double *pt2,double *pt3);
 Returns the area of the 2-D triangle that is defined by points pt1, pt2, and pt3. The

returned area will be positive if these are counter-clockwise (right-hand winding
rule) and negative if these are clockwise.

double Geo_TriArea3D(double *pt1,double *pt2,double *pt3);
 VCell addition (Ye Li). This calculates the area of a 3-D triangle, defined by the

points pt1, pt2, and pt3. Unlike Geo_TriArea3, this does not require a unit normal.

This always returns a positive value. This uses Heron’s formula. I modified Ye’s
original code to use a numerically stable formula (see Wikipedia Heron’s formula).

double Geo_TriArea3(double *pt1,double *pt2,double *pt3,double *norm);
 Returns the area of a 3-dimensional triangle which is defined by the 3-D points pt1,

pt2, and pt3 and which has unit normal norm. The returned area will be positive if
norm follows the right-hand winding rule, and vice versa.

 The base is defined as the side from pt1 to pt2; the cross product is found of the

base and the unit normal to yield a triangle height vector that has the length of the
base and which points away from the triangle; the dot product of this height and the
side from pt1 to pt3, with a sign change and divided by 2, is the area.

double Geo_QuadArea(double *pt1,double *pt2,double *pt3,double *pt4,int dim);
 Returns the area of the quadrilateral that is defined by points pt1, pt2, pt3, and pt4,

in dimension dim. Returns 0 if dim is not 2 or 3. The right-hand winding rule is
used for the sign of the answer, meaning that if the area is positive if the points
cycle counterclockwise for increasing point numbers. If dim is 3, all points are
assumed to be coplanar.

 This works by dividing the quadrilateral into two triangles and returning the sum of

their areas.

Inside point functions

double Geo_InsidePoints2(double *pt1,double *pt2,double margin,double

*ans1,double *ans2,int dim);
 Takes two points in pt1 and pt2, which are in 1, 2, or 3 dimensions (listed in dim),

and returns versions of these points, in ans1 and ans2, that are moved together by
absolute distance margin on each side. For example, the 1-D points at 0 and 5 are
moved to positions 1 and 4 if margin is 1. This function returns the separation
between pt1 and pt2; if this length is smaller than twice margin, then ans1 will be
closer to pt2 and ans2 will be closer to pt1. It is permitted for ans1 to equal pt1 and
for ans2 to equal pt2. Enter a negative value for margin if you want to move points
outwards.

 Math: delta is the vector from pt1 to pt2, which has length len. Dividing delta by

len yields a unit vector, and then multiplying it by margin yields a vector with
length margin that points in the direction from pt1 to pt2. The new points are
found by adding delta to pt1 and subtracting delta from pt2.

void Geo_InsidePoints3(double *pt1,double *pt2,double *pt3,double margin,double

*ans1,double *ans2,double *ans3);
 This takes in a triangle defined by its corners pt1, pt2, and pt3 and returns a smaller

triangle with corners ans1, ans2, and ans3. This smaller triangle is inscribed inside
the original one with distance margin between the original edges and the new edges.
All edge lengths of the original triangle must be greater than zero, which is not

checked for in this function. Enter margin as a negative number for a larger new
triangle. It is not permitted for ans1, ans2, or ans3 to occupy the same memory as
pt1, pt2, and pt3.

 Math: A triangle is defined by points p1, p2, and p3 (pt1, pt2, and pt3 in the code).

The side lengths are l12, l23, and l31. We want to find inside points s1, s2, and s3 (ans1,
ans2, and ans3 in the code) so that the inner triangle is inscribed inside the original
triangle with a margin of size m on all sides. Consider corner 1. The vector that
points from p1 to s1 bisects the two edges that meet at p1. Thus, its direction is

 direction =
p2 − p1
l12

−
p1 − p3
l31

 This equation is more obvious by putting a ‘+’ sign in the middle and reversing the
order of the last difference, but this form is easier for converting to other corners.
The length of this bisecting vector can be found using two applications of the law of
cosines. The inside angle of corner 1 is denoted θ1 (and likewise for the other
corners). From the law of cosines and the original triangle,

 2l12l31 cosθ1 = l12
2 + l31

2 − l23
2

 Now consider the triangle that is formed when two sides are added together to yield
the bisecting vector listed above. The lengths of the two sides that we added are l12
and l31 and the exterior angle is θ1; this means that the interior angle is π–θ1 and
cos(π–θ1) = –cosθ1. Now use the law of cosines to find the squared length of the
bisecting vector to be

L2 = l12

2 + l31
2 + 2l12l31 cosθ1

= 2l12
2 + 2l31

2 − l23
2

 The length of the vector that points from p1 to s1 is found using the half-angle

formula for the law of cosines.

 cosθ1
2
=

s s − l23()
l12l31

 where s = l12 + l23 + l31
2

 This is from the Math CRC p. 176. For a margin of m (margin in the code), the
length of the vector from p1 to s1 is

 d1 =
m

cosθ1
2

 This simplifies to

 d1 = m
l12l31

s s − l23()

 Putting the whole works together, the vector from p1 to s1 is

 s1 − p1 =
p2 − p1
l12

−
p1 − p3
l31

⎛
⎝⎜

⎞
⎠⎟
m l12l31

s s − l23() 2l122 + 2l31
2 − l23

2()

 For the other corners, indices can be simply incremented, modulo 3.

void Geo_InsidePoints32(double **point,double margin,double **ans);
 This is identical to Geo_InsidePoints3, but uses a little more information and runs

much faster. Enter point so that point[0...2] are the three triangle vertices and
point[3...5] are the three triangle edge normals. This returns ans[0...2] with the
new triangle vertices. New function Oct. 2015.

 As before assume that the three triangle vertices are p1, p2, and p3, and that the

inside points are s1, s2, and s3. Of these, we only consider p1 and s1 since the others
are analogous. Also, assume that e12, e23, and e31 are normalized outward-pointing
normals for the three edges. The inside angle of corner 1 is θ1. Point s1 is distance
m from edge 12, measured perpendicular to the edge. Suppose this line hits the
edge at distance a from p1. Then

 tanθ1
2
= m
a
= 1− cosθ1

sinθ1

 a = msinθ
1− cosθ11

 The latter equality in the first equation is from the Math CRC p. 171. Now extend
this line by distance b, until a line drawn from the endpoint is perpendicular to edge
31. The angle between this new line and edge 12 is 90°-θ1, implying that the
interior angle at the new point is θ1. For this angle,

 tanθ1 =
a
b
= sinθ1
cosθ1

 b = acosθ1
sinθ1

= msinθ1 cosθ1
sinθ1 1− cosθ1() =

mcosθ1
1− cosθ1

 The distance between this new point and s1 is l1, which is

 l1 = m + b = m 1− cosθ1
1− cosθ1

+ cosθ1
1− cosθ1

⎛
⎝⎜

⎞
⎠⎟
= m
1− cosθ1

 The new point, s1, is
 s1 = p1 − l1e31 − l1e12
 Finally,
 cosθ1 = −e31 ⋅e12
 The other corners are the same.

Point in functions

int Geo_PtInTriangle(double *pt1,double *pt2,double *pt3,double *norm,double

*test);
 Tests to see if the 3-D point test is inside the triangle defined by pt1, pt2, and pt3,

and which has normal vector norm. norm does not have to be normalized. Typically,
test will be in the plane of the triangle, but this is not required; if it isn’t, this
determines whether test is in the triangular column that is defined by the other
points and perpendicular to the plane of the triangle. The function returns 0 if not
and 1 if so. If test is on a triangle boundary, 1 is returned, although round-off

errors often make the boundary imperfectly defined. The method used here is to
find the cross product of each triangle edge with the vector that goes from the
second point on that edge to test; the dot product of that result with the triangle
normal is positive if test is inside the triangle.

 The functions Geo_PtInTriangle, Geo_NearestTriPt, and Geo_NearestTrianglePt

use similar math, described here. A triangle is defined by points p1, p2, and p3 and
has unit normal n. There is a test point r. For the first two functions, we only care
about the position of r relative to the triangular column that is defined as the
column which is perpendicular to the plane of the triangle, and not about the
position of r relative to the plane of the triangle. Nevertheless, it is most convenient
to think about r being either in or nearly in the plane of the triangle. The triangle is
drawn so that n points upward out of the plane of the paper. r is within this triangle
if it is on the left of the vector from p1 to p2, and left of the vector from p2 to p3, and
left of the vector from p3 to p1; otherwise it is outside of the triangle. This is the
basis of the Geo_PtInTriangle function. The amount by which r is left of the vector
from p1 to p2 is

 x =
p2 − p1() × r − p2()⎡⎣ ⎤⎦ ⋅n

p2 − p1

 The numerator of this function is denoted cross12 in the code. To determine if r is

inside or outside of the triangle, only the signs of these values are required. To find
the closest point that is in the triangle to r, which is denoted s, some tests are
needed. If r is already in the triangle, then s equals r. If r is on the right side of the
vector from p1 to p2, then the scaled dot product

p2 − p1() ⋅ r − p1()

p2 − p1()2

 is ≤0 if point 1 is closest, is between 0 and 1 if the side is closest, and is ≥ 1 if point

2 is closest. If the side is closest, then s is found by combining the scaled dot
product with the edge vector. If the closest point is a corner, s is

 s = p2 + r − p2() ⋅n⎡⎣ ⎤⎦n

 Similar conditions and equations apply for the other corners. The function

Geo_NearestTrianglePoint performs the same tests to see if where r lies relative to
the infinite column, and then uses them in slightly different ways. If r is within the
triangle, it projects it down to the plane; if r is closest to a corner, it returns that
corner; and if r is closest to an edge, it uses a dot product to project r along that
edge and then it returns the proper edge point.

int Geo_PtInTriangle2(double **point,double *test);

 This is identical to Geo_PtInTriangle, but requires a few more inputs and runs much
faster. Enter point so that point[0] is triangle vertex 1, point[1] is vertex 2,
point[2] is vertex 3, point[3] is the normal for the edge between vertices 1 and 2
(this normal is in the plane of the triangle), point[4] is the normal for the edge
between vertices 2 and 3, and point[5] is the normal for the edge between vertices
3 and 1. New function Oct. 2015.

int Geo_PtInSlab(double *pt1,double *pt2,double *test,int dim);
 Tests to see if the point test is in the slab of space between pt1 and pt2, inclusive,

which works for all dimensions. The slab of space is defined to have its boundaries
perpendicular to the line that includes pt1 and pt2.

int Geo_PtInSphere(double *test,double *cent,double rad,int dim);
 Tests to see if the dim-D point test is inside the sphere centered about cent with

radius rad. This works in all dimensions. The boundary is considered to be part of
the sphere.

Nearest functions

void Geo_NearestSlabPt(double *pt1,double *pt2,double *point,double *ans,int

dim);
 Given a slab in dim-dimensional space that is defined by pt1 and pt2, which has its

boundaries perpendicular to the line that includes pt1 and pt2, this finds the point
within the slab that is closest to point. The result is returned in ans. ans may equal
point.

 Here is the math. The slab is defined by points p1 and p2. The test point is r and

the nearest point in the slab is s. The dot product of r–p1 with p2–p1, divided by the
length of p2–p1, is the length of r–p1 in the p2–p1 direction. Dividing again by the
length of p2–p1 yields the position of r relative to the vector from p1 to p2: 0 means
that r is at the p1 side of the slab, 1 means that it’s at the p2 side, a number between
0 and 1 means that it’s within the slab, and so forth. This ratio is denoted x. If the
point is past the p1 side, then x amount of the vector from p1 to p2 is subtracted from
r to yield s, and similarly for x > 1.

int Geo_NearestLineSegPt(double *pt1,double *pt2,double *point,double*ans,int

dim,double margin);
 Given a line segment in dim-dimensional space that goes from pt1 to pt2, this finds

the point within the segment that is closest to the point point. The result is returned
in ans, which may equal point. This returns 0 if the result is not an endpoint of the
line segment, 1 if it is at endpoint 1, and 2 if it is at endpoint 2. If point is within
the segment but also within margin distance of an endpoint, it is treated as being at
the endpoint.

void Geo_NearestTriPt(double *pt1,double *pt2,double *pt3,double *norm,double

*point,double *ans);

 Given a triangular column in 3-dimensional space that is defined by points pt1, pt2,
and pt3, and with unit normal norm, this finds the point that is within the triangular
column that is closest to the point point and returns it in ans. The distance between
point and the plane of the triangle is maintained for ans. ans may equal point.

 For the math, see the description for Geo_PtInTriangle.

void Geo_NearestTriPt2(double **point,double *norm,double *testpt,double *ans);
 Identical to Geo_NearestTriPt, except that this uses a little more information about

the triangle and runs much faster. Send in point with point[0...2] equal to the
three triangle vertices and point[3...5] equal to the three edge normals. New
function Oct. 2015.

int Geo_NearestTrianglePt(double *pt1,double *pt2,double *pt3,double

*norm,double *point,double *ans);
 Given a triangle in 3-dimensional space that is defined by points pt1, pt2, and pt3,

and with unit normal norm, this finds the point that is within the triangle that is
closest to the point point and returns it in ans. The result will be in the plane of the
triangle. ans may equal point. This returns 0 if the nearest point is within the
interior of the triangle, 1 if it is on the edge between points 1 and 2, 2 if it is on the
edge between points 2 and 3, and 3 if it is on the edge between points 3 and 1. Each
edge includes the former of these points, but not the latter one (the function returns
1 if the closest point is at point pt1).

 For the math, see the description for Geo_PtInTriangle.

int Geo_NearestTrianglePt2(double **point,double *norm,double *testpt,double

*ans,double margin);
 Essentially identical to Geo_NearestTrianglePt except that this uses a little more

information and runs much faster. Send in point with point[0...2] equal to the
three triangle vertices and point[3...5] equal to the three edge normals. If testpt
is within margin distance of an edge it is treated as though it is at the edge.

double Geo_NearestSpherePt(double *cent,double rad,int front,int dim,double

*point,double *ans);
 Finds the point on the surface of a spherical shell that is closest to the point point.

The sphere is centered at cent, has radius rad, and has its front facing outwards if
front is 1 and inwards if front is -1. Space is dim dimensional, which may be any
value. The result is returned in ans and the function also returns the distance
between point and the point returned in ans; this returned distance is positive if
point is on the front side and negative if it is on the back side. ans may equal point.

void Geo_NearestRingPt(double *cent,double *axis,double rad,int dim,double

*point,double *ans);
 Finds the point on a ring that is closest to the point point. This ring is centered at

cent, has axis axis, and has radius rad. It is in dim dimensional space, which may
be any value. The result is returned in ans. ans may equal point.

void Geo_NearestCylPt(double *pt1,double *axis,double rad,int dim,double

*point,double *ans);
 This finds the point in an infinite solid cylinder that is closest to the point point.

The cylinder is defined by the point pt1, which is on the axis, the normalized axis
vector axis, and the radius rad. This works for any dimensionality, dim. The
answer is returned in ans, which is allowed to be the same as point.

int Geo_NearestCylinderPt(double *pt1,double *pt2,double rad,int dim,double

*point,double *ans,double margin);
 Finds the point on a finite length cylindrical shell that is closest to the point point.

The cylindrical shell axis extends from pt1 to pt2 and its radius is rad. It is in dim
dimensions, which can equal any number. The result is returned in ans. ans may
equal point. Returns 1 if the nearest point is within margin of the first cylinder
edge, 2 if it is within margin of the second cylinder edge, and 0 if it is not on a
cylinder edge.

int Geo_NearestDiskPt(double *cent,double *axis,double rad,int dim,double

*point,double *ans);
 Finds the point on the circular disk that is closest to the point point. The disk is

centered at cent, is perpendicular to the normalized vector axis, and has radius rad.
It is in dim dimensional space, which can be any value. The result is returned in
ans. ans may equal point. Returns 1 if the nearest point is on the disk edge and 0 if
it is not on the disk edge.

double Geo_NearestLine2LineDist(double *ptA1,double *ptA2,double *ptB1,double

*ptB2)
 Returns the closest distance between two lines, for a 3-D system. I didn’t keep the

math for this, so I’m not sure how it works. I probably found the algorithm on the
web somewhere.

double Geo_NearestSeg2SegDist(double *ptA1,double *ptA2,double *ptB1,double

*ptB2);
 Returns the closest distance between two line segments, for a 3-D system. I didn’t

keep the math for this, so I’m not sure how it works. I probably found the
algorithm on the web somewhere.

double Geo_NearestAabbPt(const double *bpt1,const double *bpt2,int dim,const

double *point,double *ans);
 Returns the closest distance between the point called point and the axis-aligned

bounding box that has its low corner in bpt1 and its high corner in bpt2, for a dim
dimensional system. The closest point within, on the edge, or on the corner of the
aabb, is return in ans. This works for all dimensions. ans cannot be NULL and needs
to be different than point.

To Rect functions

void Geo_Semic2Rect(double *cent,double rad,double *outvect,double *r1,double
*r2,double *r3);

 Calculates the smallest non-axis-aligned rectangle that encloses the semicircle that
has center at cent, radius rad, and outward pointing normalized vector outvect.
The rectangle is returned with the two perpendicular edges extending from r1 to r2,
and r1 to r3. r1 is an end of the semicircle, on the right side of outvect, r2 is the
other end, and r3 is behind r1, not on the semicircle.

void Geo_Hemis2Rect(double *cent,double rad,double *outvect,double *r1,double

*r2,double *r3,double *r4);
 Calculate the smallest non-axis-aligned rectangle that encloses the hemisphere that

has center at cent, radius rad, and outward pointing normalized vector outvect.
The rectangle is returned with the three perpendicular edges extending from r1 to
r2, r1 to r3, and r1 to r4. r1, r2, and r3 are in the plane of the opening of the
hemisphere and r4 is behind r1; no points contact the surface.

void Geo_Cyl2Rect(double *pt1,double *pt2,double rad,double *r1,double

*r2,double *r3,double *r4);
 Calculates the smallest non-axis-aligned rectangle that encloses the cylinder whose

axis extends from pt1 to pt2, and has radius rad. The rectangle is returned with the
three perpendicular edges extending from r1 to r2, r1 to r3, and r1 to r4. r1, r2,
and r3 are in the plane of the end of the cylinder around pt1 and r4 is in the plane of
the end around pt2, behind r1; no points contact the surface. I fixed a bug here on
5/10/13 (vector v2 wasn't being normalized).

X (cross) functions

double Geo_LineXLine(double *l1p1,double *l1p2,double *l2p1,double *l2p2,double

*crss2ptr);
 Returns the point at which a line segment that goes from l1p1 to l2p2 crosses

another which goes from l2p1 to l2p2. These are in 2 dimensions. The returned
value is the distance along line 1 where they cross. If crss2ptr is not NULL, then it is
returned pointing to the distance along line 2 where the crossing is. Distances are
between 0 and 1 for crossing within the line segment and other values for other
crossing positions on the infinite lines. If the two points that define a line segment
are the same, for either line, or if the two lines are parallel, the function returns NaN
in both the returned values and crss2ptr.

 Here is the math. Line 1 goes from c to d. Line 2 goes from r to s. Where they

cross, a point along line 1 equals a point along line 2: c + a(d–c) = r + b(s–r),
where a is the position along line 1 and b is the position along line 2. This is in two
dimensions, so we have two equations and two unknowns. The math is a bit
lengthy but results in the equations:

�

a =
rx − cx() sy − ry() − ry − cy() sx − rx()
dx − cx() sy − ry() − dy − cy() sx − rx()

�

b =
rx − cx() dy − cy() − ry − cy() dx − cx()
dx − cx() sy − ry() − dy − cy() sx − rx()

 The line segments cross if 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1, where the “or equal” portions of

these inequalities depend on what ends are included or excluded. Since a and b
have the same denominators, both will have zero denominators for the same
situations, which occurs when then lines are parallel or when c = d or r = s.

double Geo_LineXPlane(double *pt1,double *pt2,double *v,double *norm,double

*crsspt);
 Computes the location on an infinite plane (in 3D) where the line that is defined by

pt1 and pt2 crosses it. The plane is defined with a single point, called v, and its
normal vector, called norm. The normal vector does not need to be of unit length.
The 3D crossing point is returned in crsspt, which is not allowed to equal NULL. It
is also returned directly as a scaled value along the line, where pt1 equals 0 and pt2
equals 1. This does not check for the possibility that the line is parallel to the plane.
If that happens, then this function will probably return ±Inf for a, or NaN if the line
is in the plane, but I haven’t tested this.

 The math is easiest to see with a 2D drawing. Define s as the vector from p1 to v

and l as the vector from p1 to p2. The dot product of these with the normal gives the
length between p1 and the plane and between p1 and p2, respectively, each projected
along the normal of the plane. The scaling is somewhat arbitrary, but that’s ok
because it’s the same for both distances. The ratio of these two distances is the
relative distance along the line.

double Geo_LineXSphs(double *pt1,double *pt2,double *cent,double rad,int

dim,double *crss2ptr,double *nrdistptr,double *nrposptr);
 Returns various information about a line segment from pt1 to pt2 that may or may

not cross a spherical surface which has its center at cent and radius rad. The
dimensionality of space, dim, can be any positive integer. The infinite line may
cross the sphere surface once, twice, or not at all. The pointers crss2ptr,
nrdistptr, and nrposptr are used for this function to return values and any or all
can be set to NULL if those values aren’t wanted. nrdistptr returns the nearest
distance between cent and the infinite line and nrposptr returns the position on the
line where that nearest distance occurs. This position is offset and scaled such that
pt1 is defined as 0 and pt2 as 1. If the line does not cross the spherical surface, the
return value and *crss2ptr are returned as NaN. Otherwise, the return value and
*crss2ptr are returned with the 2 crossing points on the line, scaled as before with
pt1 as 0 and pt2 as 1, and the return value is the smaller of the two values. An error
code (NaN, Inf, or similar) is returned if pt1 and pt2 are the same point. nrdistptr
and nrposptr are identical to values returned by Geo_LineNormPos. If *nrdistptr is
returned less than rad, it is guaranteed that the returned value and cross2 will be
legitimate numbers and not NaN.

 Here is the math. Consider a circle with its center at the origin and radius R. A line
segment goes from r to s. If it crosses the circle, a crossing point will be denoted x
(it may cross 0, 1, or 2 times, and also the crossing point(s) may be on the line but
not in the line segment). The relative position of the crossing point on the line,
where r defines 0 and s defines 1, is p. Because the crossing point is on the circle
and the center is the origin, x2 = R2. Also, the crossing point can be given by
interpolation between the ends: x = (1–p)r + ps. These are set equal to each other
and solved for p.

�

R2 = 1− p()r + ps[]2

�

0 = p2 s− r()2 + p 2r ⋅ s− r()[] + r 2 − R2

 These lead to p being the solution of the quadratic equation with coefficients

�

a = s− r()2

�

b = 2r ⋅ s− r()

�

c = r 2 − R2

 If the circle center is not at the origin, then the circle center position, c, is subtracted

from each vector to yield the general solution:

�

a = s− r()2
 b = 2 r − c() ⋅ s − r()
 c = r − c()2 − R2

 Plugging this into the quadratic equation gives the solutions

 p =
−2 r − c() ⋅ s − r() ± 2 r − c() ⋅ s − r()⎡⎣ ⎤⎦

2
− 4 s − r()2 r − c()2 − R2⎡⎣ ⎤⎦

2 s − r()2

 If b2–4ac is positive, there are two solutions; if it is negative, there are no solutions;

and if it is zero, there is one solution. The number of solutions gives the number of
crossings, and the values give the crossing positions. Exactly the same math works
for spheres and higher dimension spheres. This was re-checked and found to be
correct.

 The function also returns information about the nearest point on the line to the

sphere center. For that, the position along the line from r towards s, in absolute
units, is

 posabs =
c − r() ⋅ s − r()

s − r()2

 The distance to the center from the line, dist, is found with the Pythagorean theorem

 dist 2 = c − r()2 − posabs2

 dist = c − r()2 − c − r() ⋅ s − r()⎡⎣ ⎤⎦
2

s − r()2

 Converting the absolute position to relative units along the line from r to s yields

 pos =
c − r() ⋅ s − r()
s − r()2

 Note that this position is the same as the result from the quadratic equation shown

above when the radical is set to zero. The vector products required for these
calculations are the same as those for the crossing points, so the latter set of
information can be produced with very little additional effort.

double Geo_LineXCyl2s(double *pt1,double *pt2,double *cp1,double *cp2,double

*norm,double rad,double *crss2ptr,double *nrdistptr,double *nrposptr);
 Determines if the infinite line defined by 2-dimensional points pt1 and pt2 crosses

the infinite 2-dimensional “cylinder” surface that has an axis that includes points
cp1 and cp2, has a unit right-side normal norm, and has radius rad. This cylinder is
really two parallel lines. If the line crosses the cylinder surface at all, it will cross
twice. The smaller of the two results is returned normally and the other is returned
in crss2ptr. If the line does not cross the cylinder surface at all, both values will be
NaN. Also, nrdistptr returns the nearest distance from the cylinder axis to the
crossing line, which will be 0 unless they are parallel, in which case it returns the
actual distance. If they are not parallel, nrpos returns the position along the pt1 to
pt2 line at which it crosses the cylinder axis.

double Geo_LineXCyls(double *pt1,double *pt2,double *cp1,double *cp2,double

rad,double *crss2ptr,double *nrdistptr,double *nrposptr);
 Determines if the infinite line defined by points pt1 and pt2 crosses the infinite

cylinder surface that has an axis that includes points cp1 and cp2 and has radius rad.
This is in 3 dimensions. The infinite line may cross the cylinder surface once,
twice, or not at all. See Geo_LineXSphs for details, all of which are the same for the
two functions.

Reflect function

double Geo_SphereReflectSphere(const double *a0,const double *a1,const double
*b0,const double *b1,int dim,double radius2,double *a1p,double *b1p);

 Reflects hard spheres off of each other while maintaining trajectory lengths for each
of them (this does not conserve momentum). Sphere A moves from a0 to a1 and
sphere B moves from b0 to b1. Enter dim as the system dimensionality and radius2
as the squared sum of their radii. The reflected endpoints are returned in a1p for
sphere A and b1p for sphere B. This function assumes that the spheres collide at
some point, creating an error if not (returning NaN, Inf, -Inf, or some comparable
error). Preferably, they collide at some point between positions 0 and 1 (e.g. their
separation is greater than the radius at positions 0 and is less than the radius at
positions 1). Returns the relative collision position, p (see below).

 Here is the math. The first part is similar to that used in Geo_LineXSphs. Define p

as the relative collision position along the two trajectories, equal to 0 for positions
0, 1 for positions 1, and an intermediate value for other collision positions. Using
this, define the A and B positions along their trajectories at the collision time as

 a p = 1− p()a0 + pa1
 b p = 1− p()b0 + pb1

σ 2 = b p − a p()2

= 1− p()b0 + pb1()− 1− p()a0 + pa1()⎡⎣ ⎤⎦
2

= 1− p() b0 − a0() + p b1 − a1()⎡⎣ ⎤⎦
2

 This last equation is identical in form to one from the Geo_LineXSphs derivation, so

use that solution,

 a = b1 − a1 − b0 + a0()2
 b = 2 b0 − a0() ⋅ b1 − a1 − b0 + a0()

 c = b0 − a0()2 − R2

 p = −b ± b2 − 4ac
2a

 The two solutions for p are for the time when the trajectories are first within R of

each other and the time when they are last within R of each other. If they do not
cross, then there are no solutions and the code will try to take the square root of a
negative number. The negative root is the one that is of interest. Next, using the
assumption that the trajectory lengths are not affected by the collision, the
trajectories from the collision times to the end times, meaning from ap to a1 and
from bp to b1, are reflected across the plane that is perpendicular to the line that
extends from ap to bp. This plane is the contact plane for the A and B spheres,
regardless of the relative sphere radii. Reflection leads to the equations

 ′a1 − a p = a1 − a p()− 2 a1 − a p() ⋅ b p − a p()
R2

b p − a p()

 ′b1 − b p = b1 − b p()− 2 b1 − b p() ⋅ b p − a p()
R2

b p − a p()

 Here, twice the projection of the initial displacement on the reflection vector is

subtracted from the initial displacement to produce the final displacement. Note
that (bp-ap)2 = R2. See Wikipedia “reflection”. These equations simplify to

 ′a1 = a1 − 2
1− p() a1 − a0() ⋅ b p − a p()

R2
b p − a p()

 ′b1 = b1 − 2
1− p() b1 − b0() ⋅ b p − a p()

R2
b p − a p()

 These equations are in the code.

Exit functions

double Geo_LineExitRect(double *pt1,double *pt2,double *front,double

*corner1,double *corner3,double *exitpt,int *exitside);
 Finds the point on the rectangle edge where the line defined by point pt1 and pt2

exits the rectangle. The rectangle is assumed to be axis-aligned. This function
works in 3D only. The rectangle is actually an infinite rectangular prism. Its
alignment is given with the front vector, from Smoldyn, where front[0] is whether
the perpendicular axis faces in the + or - direction, front[1] is the rectangle’s
perpendicular axis number, and front[2] is the axis parallel to the rectangle edge
from point 0 to point 1. The rectangle has its point 0 corner at corner1 and the
diagonal corner, the point 2 corner, at corner3. The exit point is returned in exitpt
(which cannot be NULL). The exit point’s position along the line, scaled so that 0
represents pt1 and 1 represents pt2, is returned from the function directly. pt1 is
not allowed to equal pt2. If the line does not actually intersect the rectangle, then
the returned exit point is still on the line, but is not on the rectangle edge. The side
of the rectangle where the line exits is returned in exitside (which cannot be NULL).
This value is 1 for the side between points 0 and 1, 2 for the side between points 1
and 2, 3 for the side between points 2 and 3, and 4 for the side between points 3 and
0.

 This function first determines the axis numbers for the rectangle sides, calling them

x and y internally, although these do not necessarily correspond to the actual x and
y axes. The internal x axis is the rectangle’s “primary” axis, meaning the one that
goes from point 0 to point 1, and the y axis is the rectangle’s “secondary” axis,
which goes from point 1 to point 2. It then computes scaled crossing values for
each of the 4 sides, using the numbering given above. Because this is the exit point,

the larger of the two values is chosen for each axis. Then, the smaller of the values
for the two different axes is chosen. This value is returned.

double Geo_LineExitLine2(double *pt1,double *pt2,double *end1,double

*end2,double *exitpt,int *exitend);
 Assumes that two line segments lie essentially along the same line, all of which is

in 2D; one segment goes from pt1 to pt2 and the other goes from end1 to end2. This
determines where the first line segment exits the second segment, which is returned
in exitpt, which cannot be NULL. It is at either end1 or end2, depending on the
relative directions of the two line segments. This also determines where along the
first segment this exit point is, which is returned directly. pt1 and pt2 are not
allowed to be the same point. However, end1 and end2 are allowed to be the same.
exitend, which is not allowed to equal NULL is returned pointing to the end number
that the line exits through, which is 1 for end1 and 2 for end2.

 This determines whether it’s best to work with the x-axis or y-axis and then does

computations with just that axis.

void Geo_LineExitArc2(double *pt1,double *pt2,double *cent,double radius,double

*norm,double *exitpt,int *exitend);
 Finds the endpoint of a 2D semicircular arc where the curved line that is defined by

pt1 and pt2 will leave the semicircle. The arc is defined with its center at cent,
with radius radius, and with an outward-pointing unit normal vector of norm. This
normal vector points in the direction that the semicircle is open. This function
assumes that pt1 and pt2 are not the same and that pt1 does not equal the center of
the arc. It returns the position where the line leaves the arc as (x,y) coordinates in
exitpt, which is not allowed to equal NULL; this is one of the two arc endpoints,
where which one depends on the line direction. exitend, which cannot be NULL, is
returned pointing to the end number that the line exits through. It is 1 if the line
exits through the clockwise end of the arc and 2 if the line exits through the
counter-clockwise end of the arc.

 This function computes the z-component of the cross product between the vector

from the arc center to pt1 and the vector from pt1 to pt2. The sign of this cross-
product indicates the line’s direction of travel along the arc and hence which end of
the arc the line will exit through. Next, it computes the position of the appropriate
arc end point.

double Geo_LineExitTriangle(double *pt1,double *pt2,double *normal,double

*v1,double *v2,double *v3,double *exitpt,int *exitside);
 Finds the point on the infinitely long 3D triangular prism through which the line

that is defined by points pt1 and pt2 exits the triangular prism. The triangular
prism is defined by a triangle with vertices at v1, v2, and v3 and has a normal vector
equal to normal. The exiting point is returned in exitpt, which may not be NULL,
and the location of this exit point along the line, where pt1 is defined as 0 and pt2 is
defined as 1, is returned directly. Most often, the line will be nearly co-planar with
the triangle, in which case this finds the place along one of the triangle’s edges

where the line leaves the triangle. pt1 and pt2 are not allowed to be the same point
and none of the triangle vertices are allowed to equal each other. This is not
designed for the case where the line does not intersect the triangular prism, although
it will still return a reasonably sensible answer (the returned exit point is along the
line but not within the triangular prism). exitside, which cannot be NULL, is
returned pointing to the side number that the line exits through. The number is 1 for
the side between v1 and v2, 2 for the side between v2 and v3, and 3 for the side
between v3 and v1.

 First, this finds differences between the points to compute relative vectors rather

than absolute points. Then, it computes cross-products of the triangle edges with
the triangle normal in order to find the outward-pointing normal for each edge. For
each one, it dots the outward-pointing normal with the line to see if the line enters
or leaves the triangle through this edge. For each edge that the line leaves through,
Geo_LineXPlane is called, which determines where along the edge the line leaves
(it’s a plane because this is really one side of the triangular prism). Finally, the
leaving point that is closest along the line (i.e. smallest a value) is chosen because
this is where the line leaves the triangle. There may be a larger a value as well for a
second plane crossing, but the line will have already left the triangle by then.

double Geo_LineExitTriangle2(double *pt1,double *pt2,double **point,double

*exitpt,int *exitside);
 This is identical to Geo_LineExitTriangle, except that it requires a little more prior

information and it runs much faster. It finds the point on the infinitely long 3D
triangular prism through which the line that is defined by point pt1 and pt2 exits the
triangular prism. Enter the triangle parameters in point. Vertex 1 is in point[0],
vertex 2 is in point[1], vertex 3 is in point[2], the normal for edge 1-2 is in
point[3], the normal for edge 2-3 is in point[4], and the normal for edge 3-1 is in
point[5]. The exiting point is returned in exitpt, which may not be NULL, and the
location of this exit point along the line, where pt1 is defined as 0 and pt2 is defined
as 1, is returned directly. Most often, the line will be nearly co-planar with the
triangle, in which case this finds the place along one of the triangle’s edges where
the line leaves the triangle. pt1 and pt2 are not allowed to be the same point and
none of the triangle vertices are allowed to equal each other. This is not designed
for the case where the line does not intersect the triangular prism, although it will
still return a reasonably sensible answer (the returned exit point is along the line but
not within the triangular prism). exitside, which cannot be NULL, is returned
pointing to the side number that the line exits through. The number is 1 for the side
between v1 and v2, 2 for the side between v2 and v3, and 3 for the side between v3
and v1. New function Oct. 2015.

 The mathematics, and variable names, are identical to Geo_LineExitTriangle, with

some additions from Geo_LineXPlane.

double Geo_LineExitSphere(double *pt1,double *pt2,double *cent,double

rad,double *exitpt);

 Finds the position on the 3D spherical shell where the line that is defined by points
pt1 and pt2 exits the spherical shell. The sphere is defined with its center at cent
and its radius equal to rad. The 3D position of the exit is returned in exitpt which
may not be NULL. Also, the relative position on the line, defining pt1 as 0 and pt2 as
1, is returned directly. If the line does not intersect the spherical shell, then the
point on the line that is closest to the shell is returned instead.

 This function is very similar to Geo_LineXSphs, but is a little less general and is

written to run substantially faster. It also handles non-intersecting situations
slightly differently, in that it returns a crossing point despite the fact that there
actually isn’t one.

void Geo_LineExitHemisphere(double *pt1,double *pt2,double *cent,double

rad,double *normal,double *exitpt);
 Finds the position along the edge of a hemisphere where the line that is defined by

points pt1 and pt2 exits, assuming that it travels along the surface of the hemisphere
by a great circle route. The hemisphere has its center at cent, has radius rad, and
has an outward-pointing normal vector of normal. The result is returned in exitpt,
which is not allowed to be NULL.

 Assume that pt1 and pt2 are both on the hemisphere surface. The great circle route

that includes these two points is clearly in the plane that is defined by a straight line
between the two points and by the hemisphere center. This considers where the
straight line that connects the two points crosses the hemisphere plane. Then, it
figures out where this is compared to the hemisphere surface.

double Geo_LineExitCylinder(double *pt1,double *pt2,double *end1,double

*end2,double rad,double *exitpt,int *exitend);
 Finds the approximate position at the end of a 3D cylinder surface where the line

that is defined by pt1 and pt2 exits. The cylinder endpoints are end1 and end2 and
the cylinder has radius rad. The coordinates where the line exits are returned in
exitpt. The end is returned in exitend, which may not be NULL, where this is set to
1 if it is at end1 and to 2 if it is at end2.

Xaabb functions

int Geo_LineXaabb2(double *pt1,double *pt2,double *norm,double *bpt1,double

*bpt2);
 Tests to see if a line segment crosses an axis-aligned boundary-box (aabb), all in 2-

D. The line extents from pt1 to pt2 and has normal vector norm; norm does not have
to be normalized. The aabb is defined by the low coordinates bpt1 and the high
coordinates bpt2. Returns 0 if they do not cross and 1 if so.

int Geo_LineXaabb(double *pt1,double *pt2,double *bpt1,double *bpt2,int dim,int

infline);
 Tests to see if the line defined by pt1 and pt2 intersects the aabb with corners at

bpt1 and bpt2, for a dim dimensional system. This is an infinite line if infline is 1

and a finite line segment from pt1 to pt2 if infline is 0. Returns 1 if they intersect
and 0 if not.

 This finds the highest “near” point in nearhi, which is the line’s last entry into one

of the axis-aligned slabs, and the lowest “far” point in farlo, which is the line’s first
exit from one of the axis-aligned slabs. If the line is in all of the slabs at once, then
the line crosses the aabb and 1 is returned.

 Geo_LineXaabb uses Kay and Kayjia’s algorithm, which I found on the web

somewhere. The idea is that a D-dimensional aabb can be seen as the intersection
of D slabs, with one perpendicular to the x-axis, one for the y-axis, etc. For a line to
intersect this aabb, it must be within all slabs at once. To determine if this is the
case, I find the “near” and “far” points for each slab. If the largest “near” point is
larger than the smallest “far” point, then the line misses. Otherwise, it intersects
(i.e. for 3-d, the sequence of near and far points must be NNNFFF for intersection
to occur). If this is a finite line segment, then the largest “near” has to be ≤1 and the
smallest far has to be ≥0.

int Geo_TriXaabb3(double *pt1,double *pt2,double *pt3,double *norm,double

*bpt1,double *bpt2);
 Tests to see if a triangle intersects an aabb, all in 3-D. The triangle is defined by

pt1, pt2, pt3, and its normal vector norm; norm does not have to be normalized. The
entire triangle area is considered, and not just the perimeter. The aabb is defined by
the low coordinates bpt1 and the high coordinates bpt2. Returns 1 for crossing and
0 for not.

int Geo_RectXaabb2(double *r1,double *r2,double *r3,double *bpt1,double *bpt2);
 Tests to see if the 2-D rectangle, which is not necessarily axis-aligned, intersects a

2-D aabb, where the whole rectangle area is considered and not just the perimeter.
The rectangle has reference point r1; r2 is in one direction from the r1 while r3 is in
the perpenicular direction. In the rectangle coordinates, r1 is the origin, r2 defines
the local x-axis, and r3 defines the local y-axis. Returns 1 for crossing a 0 for not.
The aabb boundaries are as usual.

int Geo_RectXaabb3(double *r1,double *r2,double *r3,double *r4,double

*bpt1,double *bpt2);
 Tests to see if the 3-D rectangle (perpendicular parallelpiped, technically), which is

not necessarily axis-aligned, intersects a 3-D aabb, where the whole rectangle
volume is considered and not just the perimeter. The rectangle has reference point
r1; r2 is in one direction from the r1, r3 is in a perpendicular direction, and r4 is in
the other perpendicular direction. Returns 1 for crossing a 0 for not. The aabb
boundaries are as usual.

int Geo_CircleXaabb2(double *cent,double rad,double *bpt1,double *bpt2);
 Tests to see if the perimeter of a circle crosses an aabb, all in 2-D. The circle is

defined by its center location cent and its radius rad, while the aabb is defined by
the low coordinates bpt1 and the high coordinates bpt2. Returns 1 for crossing and

0 for not. The tests are: 1) if SAT on aabb fails, returns 0; 2) if all corners are
inside circle, returns 0; 3) if any corners, but not all, are inside circle, returns 1; and
4) if circle center is within the axis-aligned stripes defined by the aabb, returns 1.
Tests 2 and 3 treat all box corners as being included with the box.

int Geo_SphsXaabb3(double *cent,double rad,double *bpt1,double *bpt2);
 Tests to see if the surface of a sphere cross an aabb, all in 3-D. The sphere is

defined by its center location cent and its radius rad, while the aabb is defined by
the low coordinates bpt1 and the high coordinates bpt2. Returns 1 for crossing and
0 for not. See Geo_CircleXaabb2 for the tests that are carried out.

int Geo_CylisXaabb3(double *pt1,double *pt2,double rad,double *bpt1,double

*bpt2);
 Tests to see if an infinite cylindrical shell crosses an aabb, in 3-D. The axis of the

radius rad cylinder includes the points pt1 and pt2, but is infinitely long. This
returns 1 for crossing and 0 for not. The method that this uses is to project along
the cylinder axis so that the cylinder becomes a circle and the aabb becomes 8 2-D
points that are connected by 12 edges. Then, several tests are run to see if the circle
and the box shadow overlap: 1) if SAT on any edge direction fails, returns 0; 2) if
all corners are inside the circle, returns 0; 3) if any corners, but not all, are inside
the circle, returns 1; 4) if the cylinder center crosses the aabb, meaning that the
cylinder may be fully inside the aabb, return 1; 5) if any edge crosses the circle,
returns 1. While these many tests create a long function, I think that it is reasonably
efficient. It should also be accurate.

int Geo_DiskXaabb3(double *cent,double rad,double *norm,double *bpt1,double

*bpt2);

 Tests to see if a solid, infinitely thin disk intersects an aabb, in 3-D. The disk is

defined by its center coordinates in cent, its radius in rad, and its unit normal vector
in norm. This looks for separating planes that are parallel to the aabb sides and that
are parallel to the disk plane. It ignores other potential separating planes, which
ought to be fixed, meaning that this function can return false positives (see the tests
in Geo_CylisXaabb3 for tests that could be used here). This returns 1 for crossing
and 0 for not.

 For the disk crossing aabb function, here is the math. Given a normalized test

vector (e.g. a normal to an aabb side), how far does the disk extend in the positive
and negative vector directions? The answer is that it extends ±Rsinθ, where θ is the
angle between the test vector and the disk’s unit normal vector (n). I am finding
sinθ using the length of the cross-product vector. This sounds lengthy but
simplifies dramatically if the test vector is parallel to a Cartesian coordinate.
Results are:

 test = (1,0,0) sinθ = (ny

2+nz
2)1/2

 test = (0,1,0) sinθ = (nx
2+nz

2)1/2
 test = (0,0,1) sinθ = (nx

2+ny
2)1/2

Approximate Xaabb functions

int Geo_SemicXaabb2(double *cent,double rad,double *outvect,double *bpt1,double

*bpt2);
 Tests to see if a semicircle perimeter crosses an aabb, in 2-D. This can return false

positives, described below. cent is the semicircle center, rad is the semicircle
radius, and outvect is the normalized outward pointing vector that defines the
direction of the semicircle opening. The aabb is defined by bpt1 and bpt2. This
returns 1 for crossing and 0 for not. This returns 1 if both the full circle perimeter
crosses the aabb, and the minimal rectangle that encloses the semicircle also crosses
the aabb. False positive results can occur if the aabb extends into the semicircle
interior but does not cross the semicircle.

int Geo_HemisXaabb3(double *cent,double rad,double *outvect,double *bpt1,double

*bpt2);
 Tests to see if a hemisphere shell crosses an aabb, in 3-D. This can return false

positives, described below. cent is the hemisphere center, rad is the hemisphere
radius, and outvect is the normalized outward pointing vector that defines the
direction of the hemisphere opening. The aabb is defined by bpt1 and bpt2. This
returns 1 for crossing and 0 for not. This returns 1 if both the full spherical shell
crosses the aabb, and the minimal rectangle that encloses the hemisphere also
crosses the aabb. False positive results can occur if the aabb extends into the
hemisphere interior but does not cross the hemisphere.

int Geo_CylsXaabb3(double *pt1,double *pt2,double rad,double *bpt1,double

*bpt2);
 Tests to see if a cylindrical shell crosses an aabb, in 3-D. This can return false

positives, described below. The cylinder axis extends from pt1 to pt2 and rad is the
cylinder radius. The aabb is defined by bpt1 and bpt2. This returns 1 for crossing
and 0 for not. This returns 1 if both the infinite length cylindrical shell crosses the
aabb, and the minimal rectangle that encloses the cylinder also crosses the aabb.
False positive results can occur if the aabb extends into the cylinder interior but
does not cross the cylinder.

Volume functions

double Geo_SphVolume(double rad,int dim);
 This returns the volume of a sphere of radius rad for any integer dimension dim that

is greater than or equal to zero. The equation for arbitrary dimension volume is
from Wolfram Mathworld “Hypersphere” eqs. 4 and 9.

double Geo_SphOLSph(double *cent1,double *cent2,double r1,double r2,int dim);
 This returns the volume in the overlap region between two spheres that are centered

at cent1 and cent2, that have radii r1 and r2, and that are dim dimensional. Zero is
returned if the spheres do not overlap at all, the volume of the smaller sphere is
returned if it is totally inside the larger, and values in between are returned for

partial overlap. The former two results are valid for all sphere dimensions, whereas
the last only works for dim equal to 1, 2, or 3; –1 is returned for higher dimensional
spheres with partial overlap. Equations are from Wolfram Mathworld. The
equation of 2-D sphere overlap is from their page on “Circle-Circle Intersection”,
eq. 14. The equation of 3-D sphere overlap is from their page on “Sphere-Sphere
Intersection”, eq. 16.

