
Documentation for Cn.h and Cn.c
Steven Andrews, © 2003

See the document “LibDoc” for general information about this and other libraries.

#include <math.h>
#define CMPXmag(a,b) (sqrt((a)*(a)+(b)*(b)))
#define CMPXang(a,b)

((b)?((a)?atan((b)/(a)):((b)>0?1.57079632679:4.71238898037)):((a)<0?3.1415
9265358:0))

typedef struct {float r;float i;} complex;

float *makecmplx(float *ar,float *ai,float *c,int n);
float *real(float *a,float *cr,int n);
float *imag(float *a,float *ci,int n);
float *magnitude(float *a,float *cr,int n);
float *cmplxphase(float *a,float *cr,int n);
float *CompConj(float *a,float *c,int n);
float *rotateCV(float *a,float *c,int n,int p);
float *rotate2CV(float *a,float *c,int n,float phi);
float *multeikx(float *xr,float *a,float *c,int n,float k);
float *multCV(float *a,float *b,float *c,int n);
float *deriv2CV(float *a,float *c,int n,int p);
float *integCV(float *a,float *c,int n);
float FTStartDflt(float *xr,int n);
float *fourier(float *xr,float *a,float *kr,float *c,int nx,int nk,int isign);
float *realcosft(float *xr,float *ar,float *kr,float *cr,int nx,int nk);
float *hankel(float *xr,float *ar,float *kr,float *cr,int nx,int nk,int samp);
float *fft(float *xr,float *a,float *kr,float *c,int nn,int isign);

Requires: <math.h>,"math2.h","Rn.h","RnSort.h"
Example program: PlotTest.c, Quantum.c

History: Written 5/99, updated 1/00. Moderate testing. Works with Metrowerks C.
Added magnitude and phase 1/25/02.

This library complements the Rn.c library with routines to manipulate complex
vectors. Complex vectors need twice the storage space as real vectors, so allocate them
with allocV(2*n). The real part of element i is stored in address a[2*i] with 0≤i≤n-1 and
the imaginary part is stored in the next element, a[2*i+1]. The notation for most function
parameters is that input vectors are labeled a and b, and output vectors are called c. No
letter following the parameter letter implies a complex vector, with size 2*n, and an r or i
implies a real or imaginary vector, with size n. The address of the result is also returned
by the routines, solely for convenience in cascaded opertations. Many Rn.c routines are
useful with complex vectors, such as sumV and copyV, but remember to use 2*n for the
vector size. A complex vector may also be treated as an nx2 matrix.

Macros and structures

complex is potentially useful elsewhere for single complex numbers, but is not used
anywhere in this library (or anywhere else currently).

CMPXmag returns the magnitude of a complex number, where a and b are the real and
imaginary components, respectively.

CMPXang returns the complex angle of a complex number, where a and b are the real and
imaginary components, respectively. It works correctly for either a or b equal to
zero and returns 0 if both inputs are equal to 0.

Functions

Most of the functions are summarized in the following table, a few of which are
explained more fully below. Listed are the sizes of the vectors that are expected. In
general, the input vectors, a and b, may occupy the same space in memory as each other
and as the result, c, for situations where they have the same sizes. Exceptions are shown
below with an asterisk.

Function a b c operation
makecmplx n n 2*n copies to form complex vector
real 2*n n real portion
imag 2*n n imaginary portion
magnitude 2*n n complex magnitude of values
cmplxphase 2*n n complex phase of values
CompConj 2*n 2*n complex conjugate
rotateCV 2*n 2*n rotate phase of elements by p*π/2
rotate2CV 2*n 2*n rotate phase of elements by phi
multeikx 2*n 2*n multiply elements by exp(i k xrj)
multCV 2*n 2*n n multiply complex elements
deriv2CV 2*n * 2*n second derivative
integCV 2*n * 2*n integral starting from element 0
fourier 2*nx * 2*nk slow fourier transform
realcosft nx * nk slow cosine transform
hankel nx * nk slow real hankel transform
fft 2*nn 2*nn fast fourier transform

makecmplx combines a real and an imaginary vector, of size n each, and combines them to
give a complex vector, of size 2*n. Either or both of ar and ai may be NULL, in
which case the real, imaginary part, or both parts of c are set to zeros.

deriv2CV returns the second derivative of a complex vector. If p is 1, then periodic
boundary conditions are used for the endpoints; otherwise the endpoints are
interpolated. See Rn.c documentation for more details.

integCV integrates a complex vector. See the documentation for Rn.c for more details.
FTStartDft is a tiny routine that returns the default starting point values for a fourier

transform, from a list of real x values and the number of values. It uses the
equations given below, but with some effort to minimize round-off error.

fourier computes the numerical result of the continuous fourier transform of a complex
vector, using a straightforward summing (not FFT). xr is the input vector of x
values, corresponding to the complex a data values, and has nx elements; xr must be
uniformly spaced (this could be easily modified, if useful). kr is also required and
is the independent variable of the transformed result, c. kr has nk elements, but they
do not need to be equally spaced, nor do they need to satisfy any sampling or
aliasing criteria. isign is the sign of the exponential, where I typically consider a
negative sign to be for a forward transform and a positive one to be for an inverse
transform, although the opposite convention is occaisionally used. The equation
approximated is c(k)=1/√(2π) ∫ a(x) e±ikx dx. By the basic nature of a discrete fourier
transform over a finite domain, periodic boundary conditions are always assumed.

The actual equation executed is ci=∆x/√(2π) ∑j aj exp(±ixjki). See below for more
discussion.

realcosft computes the real cosine transform from data. However, it is not as easy to
use as a fourier transform due to the neccessity of getting the endpoint and spacing
correct.

hankel computes the Hankel transform of a real vector, which is typically used to
compute the radial Fourier transform of a two dimensional radially symmetric
function. The approximated equation is c(k)=∫ a(x) J0(kx) dx, which is both the
forward and inverse Hankel transform (J0 is the J0 Bessel function). By
experimentation, it appears that repeated Hankel transforms using a simple discrete
version of the equation don’t yield the original function. Instead the routine
implemented here integrates the function as directly as possible, using samp x steps
per input x data point and interpolating as needed (samp=10 is reasonably good).
Results are reasonably good for a half Gaussian peaked at the origin and less good
for other things. The xr input vector needs to be sorted in ascending order.

fft computes the fast fourier transform of a complex vector. The parameters are the
same as for fourier, except that nn is the number of both x and k values and it must
be an integer power of 2. Much of this routine is copied from Numerical Recipes.
kr[0] is used to request a starting point of the k vector. However, the actual starting
point has to be an integer number of dk steps away from 0, so the nearest value is
used, which is within dk/2 of the requested value. The kr vector is set correctly.

Fourier transform discussion

While the fourier transform routines used here are simple, the correct input k vector
is remarkably confusing, due to discreteness and endpoint issues. Here are some general
relations and suggested k vectors, all of which satisfy the Nyquist relation. As above, n is
the number of points, which are numbered from 0 to n–1.

(n–1)∆x = xmax–xmin (n–1)∆k = kmax–kmin
xi = xmin+i∆x 0≤i≤(n–1) ki = kmin+i∆k 0≤i≤(n–1)

a(x) is non-symmetric
nk=nx=n
n∆x = 1 full period
∆k=2π/n∆x
kmin=0, kmax=(n–1)∆k
or if n even: kmin=–π/∆x, kmax=π/∆x–∆k
or if n odd: kmin=–π/∆x+∆k/2, kmax=π/∆x–∆k/2

a(x) is even, and only half of period is given (e.g. 0 to xmax)
The following assumes the lowest point of a is the reflection point.
nk=2nx–1
nk∆x = 1 full period
option 1: create mirror image for a(x) for –xmax to 0, then transform as above
option 2: do cosine transform with double resolution, shown below
∆k=2π/nk∆x
kmin=0, kmax=(nk–1)∆k
or: kmin=–π/∆x+∆k/2, kmax=π/∆x–∆k/2
c(k) will be entirely real.

a(x) is odd, and only half of period is given (e.g. 0 to xmax)
nk=2nx–1
nk∆x = 1 full period
option 1: create mirror image for a(x) for –xmax to 0, then transform as above
option 2: do sine transform with double resolution, shown below
∆k=2π/nk∆x
kmin=0, kmax=(nk–1)∆k
or: kmin=–π/∆x+∆k/2, kmax=π/∆x–∆k/2
c(k) will be entirely imaginary.

a(x) is even, and only half of period is given (e.g. ∆x/2 to xmax)
Now assume the lowest point of a is ∆x/2 + the reflection point.
nk=2nx
nk∆x = 1 full period
option 1: create mirror image for a(x) for –xmax to –∆x/2, then transform as above
option 2: do cosine transform with double resolution, shown below
∆k=2π/nk∆x
kmin=0, kmax=(nk–1)∆k
or: kmin=–π/∆x, kmax=π/∆x–∆k
or if a is real, just do half the k values: kmin=∆k/2, kmax=π/∆x–∆k/2
This final one is recommended for realcosft.
c(k) will be entirely real.

