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Abstract
Methods are presented for simulating chemical reaction networks with a spatial resolution that
is accurate to nearly the size scale of individual molecules. Using an intuitive picture of
chemical reaction systems, each molecule is treated as a point-like particle that diffuses freely
in three-dimensional space. When a pair of reactive molecules collide, such as an enzyme and
its substrate, a reaction occurs and the simulated reactants are replaced by products. Achieving
accurate bimolecular reaction kinetics is surprisingly difficult, requiring a careful consideration
of reaction processes that are often overlooked. This includes whether the rate of a reaction is
at steady-state and the probability that multiple reaction products collide with each other to
yield a back reaction. Inputs to the simulation are experimental reaction rates, diffusion
coefficients and the simulation time step. From these are calculated the simulation parameters,
including the ‘binding radius’ and the ‘unbinding radius’, where the former defines the
separation for a molecular collision and the latter is the initial separation between a pair of
reaction products. Analytic solutions are presented for some simulation parameters while
others are calculated using look-up tables. Capabilities of these methods are demonstrated
with simulations of a simple bimolecular reaction and the Lotka–Volterra system.
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Nomenclature

Abbreviations

RDF radial distribution function (see glossary)
rms root mean square (see glossary)

Roman symbols

D mutual diffusion coefficient
DB diffusion coefficient for a B molecule
1 Present address: Calvin Lab, bldg. 3-130, Physical Biosciences Division,
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley,
CA 94720, USA.
2 Present address: Department of Anatomy, Downing Street, University of
Cambridge, Cambridge CB2 3DY, UK.

Gs(�x) Gaussian with area of 1, mean of 0 and
standard deviation of s

g(r) radial distribution function
grn(r, r ′, s) Green’s function for diffusion in a radially

symmetric system
JB(r, t) flux of B molecules at position r and time t
k0 rate constant for a zeroth-order reaction
k1 rate constant for a unimolecular reaction
k1,i rate constant for the ith unimolecular reaction

of a single species
k2 rate constant for a bimolecular reaction
li initial distance of a molecule from a surface
lf final distance of a molecule from a surface
Prob( . . . ) probability
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prob( . . . ) probability density
pB(r, t) spatial probability density of a single B

molecule at position r and time t
s standard deviation of a Gaussian, or a mutual

rms step length
sB rms step length of a B molecule
�t time step for simulation

Greek symbols

γ boundary condition coefficient for the Collins
and Kimball model

φ probability of geminate recombination
ρB(r, t) number concentration of B molecules at

position r and time t

σb binding radius
σu unbinding radius

Subscripts

C Collins and Kimball model
N Numerical algorithm
S Smoluchowski model, which is also the

continuous time model system
a activation limited
i irreversible bimolecular reaction
r reversible bimolecular reaction

1. Introduction

Computer simulations can be valuable tools for investigating
chemical reaction networks, such as the complex biochemical
networks that make up living systems [1–3]. They are best
seen as aids to intuition, allowing one to explore the complex
dynamics of reaction networks with relative ease. An aspect
of this is that a simulation can rigorously determine if a
proposed reaction mechanism is consistent with observed
results. To mention a few examples, simulations of the
Escherichia coli chemotaxis signaling network have yielded
insights into biological robustness [4], bacterial individuality
[5] and protein allostery [6].

Reaction network simulations can be classified by (i)
whether they account for spatial information and (ii) whether
they include the stochasticity that arises from discrete
molecules rather than continuous chemical concentrations.
With greater levels of detail, the results become more
accurate but the simulations take longer to execute and require
more experimental parameters. The algorithms presented
in this work are in the most detailed category of this
classification scheme, accounting for both stochastic and
spatial information. This high level of accuracy is applicable
to a wide range of systems but is especially useful for biology,
where there can be a high degree of spatial organization [7, 8]
and key molecular species often exist with low copy numbers
[5, 9]. As an example, a reaction network that includes
membrane ion channels is highly sensitive to the stochasticity
that arises from individual molecules and spatial influences.

The drawbacks of the high level of detail were reduced as much
as possible by designing the algorithms to be computationally
efficient and to require few parameters.

The fundamental processes for which algorithms are
presented are as follows: molecular diffusion, interactions of
molecules with surfaces, zeroth-order chemical reactions (the
spontaneous introduction of new molecules into the system,
which is physically impossible but computationally useful),
unimolecular chemical reactions and bimolecular chemical
reactions. In all but the last case, the algorithms yield
results that are in exact accord with those of a simplified
model system. However, achieving the same accuracy for
bimolecular reactions would make a simulation too slow to be
useful. Instead, we present a fast alternative method and show
that it yields results in good agreement with analytical models.

Our algorithms have been implemented in a C language
computer program called Smoldyn (for Smoluchowski
dynamics) which may be downloaded from the World Wide
Web. Another publicly available computer program that works
at a similar level of detail is MCell, which was originally
developed to model signaling in neuromuscular junctions [10],
although it works at a lower level of spatial resolution and it has
the limitation that bimolecular reactions can only be simulated
at surfaces.

2. The model system

In this section, real chemical processes are simplified to a
precisely defined model system. Our model is an extension
of the Smoluchowski model for diffusion-influenced systems
[11], which is presented here as well.

In the model, time increases continuously, as it does in
nature, but in contrast to the finite time steps that are introduced
in the next section for the simulation algorithms. Each
molecule is treated as a point-like particle that diffuses freely
in space with continuously variable x, y and z coordinates,
quantified with Fick’s laws [12]:

JB(r, t) = −DB∇ρB(r, t) (1)

ρ̇B(r, t) = DB∇2ρB(r, t). (2)

B is some generic chemical species, JB(r, t) is the flux of
B molecules at position r and time t, ρB(r, t) is the local
number concentration of B molecules, and DB is the diffusion
coefficient for B [13]. The coordinates of a molecule are
its center of mass. The Smoluchowski description also
accounts for external and long-range forces (such as between
ionic species [14]) but we ignore them because they have
minimal influence in a typical biochemical system and they
are computationally expensive to simulate. To allow the use
of Fick’s laws on small size scales as well as large ones,
the dynamics of the solvent and other unreactive species are
ignored [15], leading to infinitely detailed Brownian motion of
the reactive molecules. This approximation makes the results
only accurate on size scales that are somewhat larger than
those of individual molecules. Similarly, steric interactions
are ignored between molecules that do not react with each
other, which is valid for dilute solutions. Molecular spatial
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Forward reaction: A + B → C

Back reaction: C → A + B

Figure 1. Forward and back reactions in the physical model for the
reaction A + B ↔ C, shown from the standpoint of an A molecule.
A forward reaction occurs when the centers of an A and a B
molecule (black dots) diffuse to a separation that is equal to the
binding radius, σb (circle with solid line), forming a C molecule.
When a back reaction occurs, the A and B products are initially
separated by the unbinding radius, σu (circle with dashed line),
which is made larger than the binding radius so as to prevent the
instant recombination of the products. The angular location of B is
random due to rotational diffusion. The same method is used for the
numerical algorithms presented in this paper although, for
computational efficiency, diffusion is simulated with relatively long
steps and the sizes of the binding and unbinding radii are modified
so as to yield quantitatively accurate reaction rates.

orientations and internal energy levels typically fluctuate on
time scales that are faster than the diffusive and reactive
processes that are of interest [14, 16], allowing them to
be ignored as well. Because of these approximations, the
complete time-dependent state of the model is fully specified
by a list of the molecular positions.

By definition, a diffusion-limited bimolecular reaction
occurs very rapidly once two reactive molecules come into
contact, which happens when the molecular centers are
separated by a distance equal to the sum of the molecular radii.
This description is used for the Smoluchowski model in which
a bimolecular reaction occurs at the moment when two reactive
molecules collide with each other. Smoluchowski derived
the steady-state reaction rate for this physical description,
in terms of the molecular radii and the diffusion coefficients
[11]. However, most reactions occur at a slower rate because
of a reaction activation energy. This is addressed in the
Smoluchowski model by replacing the sum of the molecular
radii with a smaller effective binding radius (σb), thus yielding
the correct steady-state reaction rate for all bimolecular
reactions, regardless of the reaction mechanism (see figure 1).
This binding radius is derived below.

Reversible reactions, such as the generic reaction
A + B ↔ C, pose a problem. If the A and B products of the

backward reaction are initially separated by the binding radius,
which is the obvious separation, then the ensuing Brownian
motion of A and B makes them almost certain to collide
again. This leads to a nearly instantaneous reaction back
to C, which is clearly not acceptable. (The terms ‘almost’
and ‘nearly’ are understatements since the actual probability
for recollision is 1 and the expected time that elapses before
reacting is 0 [17]. Qualitatively, an initial separation of σb

implies that any net motion of the molecules towards each
other yields a reaction, which is nearly certain because true
Brownian motion has an infinite number of random walk steps
in a finite time period; all but a vanishingly small portion of
the possible random walks include at least a little net motion of
the molecules towards each other.) This recollision problem
is not addressed in the Smoluchowski model because it does
not consider reversible reactions. The related Collins and
Kimball model solves the problem by replacing the rule that
reactions always occur upon collision with one in which there
is a certain probability of a reaction at each collision [17, 18].
While useful mathematically, this confuses the physical picture
because a single collision almost certainly leads to infinitely
more collisions, implying that the probability of reaction at
each collision must be infinitesimal. For ease of simulation,
our scheme is closer to the spirit of the Smoluchowski model:
the A and B dissociation products are initially separated by a
fixed distance which is larger than σb, called the unbinding
radius (σu) [19]. Using this rule, neither inter-molecular
forces nor reaction probabilities need to be introduced, leaving
diffusion as the sole fundamental process. After unbinding,
the A and B product molecules may diffuse away from each
other or they may diffuse together again and rebind, called a
geminate recombination [14, 20].

An unbinding radius is an artificial concept but its use
can be justified. Physically, a C molecule is an A–B complex,
for which the interaction potential energy is a function of
the A–B separation, typically with an activation barrier [21].
If diffusion influences the system even a small amount, any
boundary between reactants and products may be crossed
many times. To prevent this, it is helpful to introduce
bistability by defining a boundary on each side of the activation
barrier: a forward reaction occurs when the A–B separation
is less than the inner boundary and a reverse reaction occurs
when it is greater than the outer boundary [22]. The model
defined here does not have an activation barrier, although we
retain the two boundaries.

Most aspects of this model on size scales of individual
molecules or smaller are incorrect, such as infinitely detailed
Brownian motion, the assumption that molecules do not have
excluded volume, and reaction dynamics with fixed binding
and unbinding radii. However, all aspects of the model are
qualitatively correct on larger size scales because macroscopic
diffusion does follow Fick’s laws and reactions only occur
between physically proximate molecules. It becomes
quantitatively accurate when the model is supplemented
with experimental data, including diffusion coefficients and
reaction rates.
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Bimolecular reactions

Unimolecular reactions

Zeroth-order reactions

Surface interactions

Diffuse molecules

Figure 2. Flowchart for our simulation program Smoldyn.
Alternating diffusion and bimolecular reactions are an essential
aspect of the bimolecular reaction algorithm.

3. Simulation algorithms

In this section, the model is converted from a simplified
description of physical processes to numerical algorithms. To
do this, the continuous time of the model is replaced with
steps of length �t, which can be kept constant throughout the
simulation [23] (which is done in Smoldyn) or made adaptive
so as to focus computational effort on important time segments
[24]. Either way, it is helpful to think of the end of each step as
an observation of a virtual system that evolves continuously.
In particular, molecules are considered to move with infinitely
detailed Brownian motion, even though the detail is neither
explicitly simulated nor observable. Using this interpretation,
these algorithms are designed to yield observable results that
are as close as possible to the analytically derived dynamics
of the model system. The simulation errors can be made
arbitrarily small because the simulated dynamics become
identical to those of the model in the limit of small time steps.
Except for the bimolecular reaction one, each algorithm can be
called ‘exact’ because the simulated results are also identical
to those of the model for arbitrarily long time steps in the
absence of coupling with other processes.

A conventional program framework is used here, in which
the program has some initialization procedures and then runs
a loop over time steps (figure 2). During each iteration of the
loop, several processes are simulated independently, described
below in turn. See appendix A for implementation details.

3.1. Molecular diffusion

Because the model considers individual molecules rather than
concentrations, Fick’s second law (equation (2)) is rewritten
as a master equation by replacing the number density of B

molecules with the spatial probability density for a single
molecule:

ṗB(r, t) = DB∇2pB(r, t) (3)

The product pB(r, t) dr is the probability that a specific B
molecule is within volume dr about position r at time t. In a
simulation, a molecule starts at a known position and diffuses
over the course of a time step. Solving equation (3) for this
initial condition shows that the probability density for the
displacement of a molecule after a time step has a Gaussian
profile on each Cartesian coordinate [12, 25]:

pB(r + �r, t + �t) = GsB(�x)GsB(�y)GsB(�z) (4)

Gs(�x) ≡ 1

s
√

2π
exp

(
−�x2

2s2

)
(5)

sB ≡
√

2DB�t (6)

where �x, �y and �z are the Cartesian displacements,
Gs(�x) is a normalized Gaussian with mean 0 and standard
deviation equal to s, and sB is the root mean square (rms)
step length of species B. These results form the basis of
a simulation method called Brownian dynamics [26, 27] in
which diffusion is simulated by picking a normally distributed
random displacement for each molecule at each time step.

3.2. Treatment of surfaces

Nearly all physical reaction systems are confined to a finite
volume, making it necessary to simulate surface interactions.
Surfaces are most easily treated as arrays of flat panels which
might be as simple as the square walls of a cubical reaction
volume or as complex as the membranes of a neuromuscular
junction [10]. From a computational viewpoint, surface types
include the following: inert impermeable surfaces, which
prevent molecules from passing from one side to the other;
periodic boundaries of the simulation volume (also called
toroidal boundaries), which do not exist physically but are
useful for the simulation of systems with effectively infinite
extent; and absorbing surfaces, which irreversibly capture all
molecules that diffuse into them. In each case, the algorithm
has to determine whether each molecule interacted with each
panel of the surface during the previous time step using the
standard criterion that all observable dynamics should be
indistinguishable from those of the model.

Impermeable surfaces are considered first. Solving
equation (3) with an impermeable plane as a boundary
condition shows that the spatial probability density, pB(r, t),
reflects off the surface like light from a mirror [25]. Thus,
even though molecules are assumed to move exclusively by
Brownian motion over the course of a time step and the surface
may be quite rough on a microscopic scale, diffusion in the
presence of inert impermeable surfaces is accurately simulated
using ballistic-type reflections [26]. In the algorithm,
each molecule is propagated forward over �t according to
equation (4); then, the straight line path of the molecule is
reflected off any surface that it crosses.

Periodic boundaries are similar. Because equation (4)
is correct in the absence of surfaces, it is also correct for
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periodic boundaries, provided that any probability density that
escapes the system is translated across the simulation volume.
In the algorithm, any molecule that diffuses past a boundary
is transferred across the system as though it had followed a
straight line over the course of the time step.

An absorbing surface is treated by temporarily
considering it to be permeable and asking the question: what
is the probability that a specific molecule crossed the surface
during the time step? If the molecule started on the inside and
diffused to the outside, then it obviously crossed the surface
and should be absorbed. It could also start and end on the
inside but have crossed the surface during the time step, the
probability of which can be found using the initial and final
perpendicular distances to the surface, denoted by li and lf ,
respectively (these are positive if the molecule is inside and
negative if it is outside). The probability that the molecule
crossed the surface at least once, starting from distance li,
conditioned with the additional knowledge of lf , is

Prob(cross|lf ) = 1 − Prob(no cross|lf )

= 1 − prob(no cross, lf )

prob(lf )
. (7)

Prob() is a probability, prob() is a probability density, a vertical
line indicates a conditional probability, and a comma indicates
a joint probability [28]. For example, Prob(cross|lf ) is the
probability that the boundary is crossed, given a knowledge
of lf , and prob(no cross, lf ) dl is the probability that the
boundary is not crossed and the final distance is between lf
and lf + dl. The densities are found with equation (3) and
the initial condition that the molecule starts at li away from a
surface [25]. For the joint density, a boundary condition is that
the probability that the molecule is at the surface is 0. Results
are

prob(no cross, lf ) = GsB(lf − li) − GsB(lf + li) (8)

prob(lf ) = GsB(lf − li). (9)

Substituting these into equation (7) yields the desired answer:

Prob(cross|lf ) = exp

(
−2li lf

s2
B

)
. (10)

Thus, the algorithm for absorbing surfaces is that a molecule
should be absorbed if it ends up on the far side of the surface
at the end of a time step or if a random number with a uniform
distribution between 0 and 1 is less than exp

(−2li lf
/
s2

B

)
.

All of these methods are exact for planar surfaces but are
in error for curved surfaces or near junctions of flat surface
panels. An example is a pore in a membrane (figure 3): using
the continuous time model, a molecule might curve around
after going through the pore, but the diffusion algorithm only
allows molecules to travel in straight lines during time steps. In
general, the spatial resolution is approximately the molecular
rms step length.

3.3. Zeroth-order reactions

A zeroth-order reaction progresses at a rate that is
independent of all chemical concentrations, implying that
product molecules are formed spontaneously. While
unphysical, zeroth-order reactions can be useful components

Model: detail is infinite

Simulated: detail ~ rms step length

Figure 3. Example of limited spatial resolution in the simulation.
The top panel shows diffusion through a pore in a membrane (gap in
black bar) using the model system. The molecule starts above the
pore. The thin black line shows a representative molecule trajectory
and the shading represents the probability that the particle ends at
each location. The lower panel presents the same information for the
simulation, where it is seen that the probability density below the
pore is incorrect due to the use of finite length time steps and straight
line trajectories. Accurate results would require a shorter time step.

of simulations because they can provide chemical inputs to the
simulated system without requiring a complete treatment of
the input mechanism. For example, a chemical reactor might
have an input port that continuously adds a chemical, or a
biological cell may include a protein that is synthesized by
biosynthetic pathways that are not of immediate interest. In
both cases, these could be treated explicitly, or they could be
simulated using a zeroth-order reaction to produce exactly the
same result.

If the product of the reaction is A and k0 is the rate constant,
the zeroth-order mass-action rate law is

ρ̇A = k0. (11)

On average, k0�t product molecules are formed during each
time step. However, this has some stochastic variation, which
is given with a Poisson distribution [28].

3.4. Unimolecular reactions

Unimolecular reactions are described by the generic equation
A → products. This might describe a true unimolecular
reaction, such as a molecular dissociation, or a bimolecular
reaction between an A molecule and an abundant species that
is not explicitly simulated. The kinetics are typically of first-
order:

ρ̇A = −k1ρA (12)

where k1 is the first-order rate constant. Upon integration, the
probability that a specific A molecule reacts during �t is

Prob(reaction) = 1 − exp(−k1�t). (13)
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If an A molecule can react via multiple first-order
pathways, a sequential application of equation (13) leads to
a bias towards the first pathway that is attempted. Instead,
solution of a collection of equations like equation (12), where
the ith reaction has a first-order rate constant k1,i, leads to the
reaction probabilities [10]:

Prob(reaction i) = k1,i∑
j k1,j


1 − exp


−�t

∑
j

k1,j





 .

(14)

The efficient simulation of these equations is discussed in
appendix A.

3.5. Bimolecular reactions

Bimolecular reactions, described by the generic equation A +
B → C, have the steady-state reaction rate:

ρ̇C = k2ρAρB (15)

where k2 is the second-order rate constant, from which it
is possible to find the binding radius of the model. An
exact algorithm would be based on a question similar to that
posed above for absorbing surfaces: given the positions of
molecules A and B before and after a time step, what is the
probability that the distance between them was less than the
binding radius at some point during the time step? Equations
analogous to equations (7) to (10) can be written and solved
for this situation (they are derivable from equations presented
in chapter 14 of [29]). However, the most simplified result still
requires a numerical integral, making it too computationally
expensive for simulations. Even a transcription of the
result to a look-up table requires a very large table, four-
dimensional interpolation (initial separation, final separation,
interior angle and binding radius), and still requires many
calculations for every potential collision at every time step.
Unlike the other algorithms, an exact solution for bimolecular
reactions is not practical. However, there may be reasonably
efficient simulation methods if one abandons the intuitive
representation presented here, along with the option of using
constant size time steps [30, 31].

Because of these difficulties, we temporarily ignore the
theory and choose an algorithm that is intuitive, simple and
very fast: two molecules always react if they end up within
σb(�t) at the end of a time step and never react if the final
separation is greater than that. For reversible reactions,
dissociation products are initially separated by σu(�t). These
parameters are analogous to the binding and unbinding radii of
the model system (figure 1) and approach them in the limit of
small time steps. They are derived in the next section and the
resulting dynamics are investigated in the following section.

4. Bimolecular reaction parameters

The correct binding radius for the simulation is, quite simply,
that value which makes the simulated bimolecular reaction rate
equal the experimental rate. The latter is presumed known, so
we derive the simulated reaction rate in terms of the binding

radius, equate it to the experimental rate constant, and invert
the result to yield the binding radius. Unfortunately, the
derivation is complicated.

The first complication occurs in deciding which
experimental reaction rate to use. As usual, the chemical
equation is A + B → C. Suppose we start with a well-mixed
distribution of reactants, which is one in which the molecules
have random positions but with the constraint that no A–B
pairs are allowed to be closer than a binding radius of each
other. As we observe the subsequent reactions, we see that the
reaction rate ‘constant’ given in equation (15) is not actually
constant but is extremely high initially, because of A–B pairs
that happen to start close to each other, and then decreases
and approaches a steady-state value [11, 14, 32]. This steady-
state value is nearly always the one that is reported as the
experimental reaction rate. Thus, our approach is to find the
binding radius which makes the simulation, using a steady-
state distribution of A and B molecules, reproduce the reported
reaction rate. The resulting binding radius is a parameter of
the model, so it is equally applicable at steady-state and away
from steady-state.

In these derivations, separate equations are found for (i)
the dynamics that arise from the analytical model that was
defined in the section 2 and which is based on Smoluchowski
dynamics and (ii) those that arise from the numerical
algorithms. In cases where equations differ between the
Smoluchowski based model and the numerical algorithm,
they are labeled with subscripts ‘S’ and ‘N’, respectively.
Additionally, the subscripts ‘i’ and ‘r’ are used to distinguish
results for irreversible and reversible reactions. Look-up tables
and source code are available as supplementary information3,
as described at the end of the text.

4.1. Irreversible reactions, Smoluchowski model

The radial distribution function [33] (RDF, g(r)) between
A and B molecules is the average distribution of distances
between A and B molecules. More precisely, ρBg(r) dr is the
probability that there is a B molecule within a small volume
element dr at distance r from any specific A molecule, where
ρB is the overall number density of B. Because A and B
molecules react when they collide, g(r) equals 0 for r < σb.
Any influence between A and B molecules diminishes for large
separations, so g(r) approaches 1 as r tends to infinity. While
it is conceptually possible to start a chemical system with
nearly any shape RDF, the Smoluchowski RDF for irreversible
reactions always approaches the steady-state solution [14]
(figure 4(A)):

gSi(r) = 1 − σb

r
, r > σb. (16)

The depletion of B molecules around A molecules arises not
from any long-range interaction, but because reactive species
that are close together are likely to react, which excludes them
from the average [17].

The reaction rate is the net flux of B molecules towards
A molecules, which is calculated using equation (3) and the

3 Supplementary data files are available from stacks.iop.org/PhysBio/
1/3/001.
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Figure 4. Radial diffusion functions (RDFs) for bimolecular
reactions at steady-state with various models. Diffusion coefficients
are 10−8 cm2 s−1 for each reactant and rate constants are 106 M−1 s−1

for irreversible reactions. For reversible reactions, geminate
recombination probabilities are 0.25 and rate constants are increased
to 1.3 × 106 M−1 s−1 to account for geminate reactions
(equation (28)). (A) Smoluchowski model (equation (16))
with σb = 0.066 nm. (B) Smoluchowski model (equation (29)) with
σb = 0.066 nm and σu = 0.264 nm. (C) Numerical algorithm with
σb = 0.075 nm, s = 0.049 nm, kNa = 2 × 106 M−1 s−1, and �t =
0.61 ns for the solid line; other lines use time steps that are 0.061
and 6.1 ns, shown with short and long dashes, respectively.
(D) Lines are the same as those in (C) but for reversible reactions;
for the solid line, σu = 0.264 nm. Arrows represent Dirac delta
functions at the unbinding radii. (E) Collins and Kimball model
(equation (33)) with kCa = 2 × 106 M−1 s−1 and σb = 0.132 nm.
(F) Collins and Kimball model (equation (35)) with kCa =
2 × 106 M−1 s−1, σb = 0.132 nm and σu = 0.264 nm. Note that the
RDF for the numerical algorithm approaches the Smoluchowski
RDF for short time steps, a well-mixed RDF (a step function) for
long time steps, and is qualitatively similar to that of the Collins and
Kimball model.

definition of the RDF. The general reaction rate for models
in which time is treated continuously and its solution for the
Smoluchowski model at steady-state are, respectively,

ρ̇C = 4πσ 2
b DρAρB

∂g(r)

∂r

∣∣∣∣
σb

(17)

ρ̇C = 4πDσbρAρB (18)

Here D is the mutual diffusion coefficient [34], defined as
DA + DB. The proportionality of the reaction rates to ρA and
ρB is the same as in the second-order rate equation, leading
to the well-known solution of the rate constant for irreversible
reactions according to the Smoluchowski model [11]:

kSi = 4πDσb. (19)

This rate is limited only by diffusion, so kSi is the diffusion-
limited rate constant.

4.2. Irreversible reactions, numerical algorithm

In the limit of short simulation time steps, the diffusion
simulated by Brownian dynamics approaches the infinitely
detailed Brownian motion that the model assumes. Thus,
in this limit, the numerical reaction rate constant, kNi , is
equal to the Smoluchowski result in equation (19). Solving
the equation for σb, which is the only necessary simulation
parameter (the notation σb(�t) was simplified to just σb),
yields a solution that is valid whenever the mutual rms step
length is much smaller than the binding radius; the mutual
rms step length is defined as s = (2D�t)1/2 = (

s2
A + s2

B

)1/2
.

It is instructive to see when this solution can be used. A
typical reaction rate for proteins is 106 M−1 s−1 and protein
diffusion constants are typically at least 10−8 cm2 s−1. These
are substituted into equation (19), and then equation (6) is
solved for �t to yield �t � 1 ns. A simulation time step of
a nanosecond or longer would not just limit spatial resolution,
but would produce a simulation with the incorrect reaction
rate. On the other hand, the use of a sufficiently short time
step would make most simulations run much too slowly to be
useful.

Next, we turn to the long time step limit, given by the
condition s � σb. Now, any correlations between the positions
of reactants are eliminated after the simulation executes one
iteration of the diffusion algorithm, so the probability that
a certain A will react with a certain B is just the ratio of
the volume of a sphere of radius σb to the total system
volume. Multiplying by the numbers of A and B molecules and
changing to concentrations yields the numerical rate constant
for the long time step limit:

kNi = 4π

3
σ 3

b �t, �t → ∞. (20)

Using the same reaction rate and diffusion coefficients as
above, this equation is not valid until the mutual rms step
length is greater than around 100 nm (using s = 10σb). A step
length this long precludes the possibility of attaining spatial
resolution anywhere near the sizes of molecules, making it not
generally useful either.

Between these limits, kNi cannot be solved analytically, so
it was calculated numerically to create a look-up table for later
use (available as supplementary information). The number of
variables was minimized by dividing all lengths by the binding
radius, leading to unitless variables: kNi�t

/
σ 3

b is the reduced
reaction rate, s′ = s/σb is the reduced rms step length, and
σb/σb = 1 is the reduced binding radius. To perform the
calculation, a tabulated RDF (500 equally spaced data points,
with reduced radii from 0 to 10) was evolved over time exactly
as it would evolve in the simulation algorithm, by alternating
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Figure 5. Method used for calculating the reduced bimolecular
reaction rate, kNi�t/σ 3

b , for irreversible reactions. A tabulated RDF
was alternately integrated with Green’s function to simulate
diffusion and set to 0 between r = 0 and r = 1 to simulate reactions.
After steady-state was reached, the RDF after diffusion (diamonds
and dashed line) and the RDF after absorption (squares and solid
line) were saved and the area between r = 0 and r = 1 of the former
function was integrated to find the reduced reaction rate. Tabulated
RDFs for irreversible reactions extended to a reduced radius of 10,
while those for irreversible reactions extended to σ ′

u + 3; all RDFs
used 500 data points (for clarity, only every fifth data point is
shown).

diffusion steps and irreversible reaction steps. The calculation
began with either the RDF in equation (16) or with g(r) = 1
for all r > 1 and was continued until the RDF converged to a
steady-state result (figure 5).

Conceptually, diffusion of an RDF from an initial state
to its state after time �t is computed by convolving the
three-dimensional radial distribution function with a three-
dimensional Gaussian with standard deviation s ′ (analogous
to equation (4)). Because of rotational symmetry, this
convolution simplifies to the integral of the product of the
RDF and the appropriate Green’s function [14, 29], given as
grn(r, r ′, s):

gNi,final(r) =
∫ ∞

0
4πr ′2grn(r, r ′, s)gNi,initial(r

′) dr ′ (21)

grn(r, r ′, s) = 1

4πrr ′ [Gs(r − r ′) − Gs(r + r ′)]. (22)

Most of the integral in equation (21) was calculated
numerically using the tabulated RDF and the trapezoid method
[35]. The rest of the integral, from the end of the tabulated
RDF to infinity, was calculated by extrapolating the RDF with
a function of the form 1 + a/r which is the general solution
of equation (3) with the boundary condition that gNi(r) tends
to 1 for large r; a is a fitting parameter that was found using
the final 10% of the tabulated RDF. The analytic integral for
the extrapolated portion, which was then combined with the
numerical integral, is∫ ∞

r1

4πr ′2 grn (r, r ′, s)
(

1 +
a

r ′
)

dr ′

= 4πs2r1 grn(r, r1, s) +
1

2
(e− + e+) +

a

2r
(e− − e+) (23)
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Figure 6. The reaction rate for the numerical algorithm as a
function of the algorithm parameters, which are the rms step length
and binding and unbinding radii. The bold line (lowest line)
represents irreversible reactions. From top to bottom, the other lines
are for reversible reactions with reduced unbinding radii that are 0,
0.5, 0.7, 0.8, 0.9, 1.0 (dashed line), 1.6, 2.5, 4.0, 6.3 and 10.0.
Shown are interpolations and extrapolations from tabulated data,
extended with analytical solutions where available.

e± ≡ erfc
r1 ± r

s
√

2
. (24)

After a diffusion step, the reduced reaction rate was
computed by numerically integrating the tabulated RDF from
0 to the reduced binding radius (figure 5):

kNi�t

σ 3
b

=
∫ 1

0
4πr2gNi(r) dr. (25)

Afterwards, these values of gNi(r) were set to 0 to mimic the
reaction portion of the simulation algorithm. The RDF was
considered to have achieved steady-state when the reduced
rate constant varied by less than 1 part in 105 over sequential
iterations (figure 4(C)).

To improve accuracy and provide an error estimate, the
calculation was run in two directions: starting with long rms
step lengths, leading to reduced rate constants that decreased
asymptotically as steady-state was approached, and vice versa.
These results were averaged to yield best estimates for the
reduced rate constants. The difference between results was
never greater than 5%, implying that calculation errors due
to the RDF not being at steady-state are likely to be less than
2.5%. Other potential errors were minimized by increasing the
density of data points and the maximum tabulated radius until
changes in results were much less than the errors quoted above.
Also, it was confirmed that the RDF approached equation (16)
for short time steps and a step function for long time steps.

The result of these calculations is the bold line at the
bottom of figure 6, produced with a smooth interpolation
of the calculated rates. Although the figure is shown with
reduced units, this line represents kNi as a function of σb

and �t, making it the equivalent of equation (19), but for
the numerical algorithm. The ends of the curve conform to
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the limits in equations (19) and (20), which are rewritten in
reduced form:

kNi�t

σ 3
b

= 2πs ′2, �t → 0 (26)

kN�t

σ 3
b

= 4π

3
, �t → ∞. (27)

Thus, we have solved the forward problem, which is the
solution of the rate constant that is actually simulated in
terms of the simulation parameters. Since what is needed
is a solution to the inverse problem, which is the binding
radius that the simulation needs to use in order to reproduce a
known reaction rate, an iterative search routine was written to
invert the interpolated function. Using our Smoldyn program,
we verified that irreversible bimolecular reaction rates are
accurately simulated using a wide range of time steps.

4.3. Reversible reactions

The reversible reaction A + B ↔ C has the additional
complication of geminate recombinations. This topic is
addressed on a general level before we derive reversible
reaction rates for the Smoluchowski model and the numerical
algorithm.

The probability of a geminate recombination is denoted
by φ. Of all the forward reactions that occur when the system
is at equilibrium, which occur with reaction rate kr, a fraction
1 − φ are non-geminate reactions. This portion of the reactants
does not share a common history so all of their dynamics,
including the rate at which they react (ki), are completely
equivalent to the irreversible situation considered previously.
This leads to a general relationship between the irreversible
and reversible rate constants at equilibrium (true for the model,
simulations and all physical systems):

ki = (1 − φ)kr . (28)

We are not suggesting that kr is larger than ki because of
the physically unreasonable idea that reaction reversibility
somehow makes molecules more reactive. Instead, if a
reaction is reversible, the reactants are generated in close
proximity to each other by the back reaction, which leads
to faster reactant encounters and a higher reaction rate. The
correct value for ‘the forward reaction rate constant’ depends
on the conditions under which it was measured. If the
experimental system was at equilibrium, then there must have
been geminate reactions as well as non-geminate reactions,
leading to the measurement of the larger reaction rate constant,
kr. On the other hand, if the product was removed as fast as it
was formed, then there were no geminate reactions, leading to
the measurement of the smaller irreversible rate constant, ki.
Below, we derive results for the equilibrium situation.

4.4. Reversible reactions, Smoluchowski model

At equilibrium, the same number of A and B molecules are
produced in back reactions as are lost in forward reactions,
implying that the source of B molecules at σu exactly matches
the sink at σb. This implies that there is no net flux of B towards

A molecules outside a distance σu and, to be consistent with
zero flux and the boundary condition that g(∞) = 1, the RDF
must equal 1 for all r > σu. Equation (3) was solved using
this modified boundary condition to yield the RDF for the
Smoluchowski model for reversible reactions (figure 4(B)):

gSr(r) = 1 − σb(σu − r)

r(σu − σb)
, σb < r < σu. (29)

As before, equation (17) yields the equilibrium rate constant.
Combing the result with equation (28) yields the reversible
reaction rate and the probability of geminate recombination:

kSr = kSi

1 − φS

(30)

φS = σb

σu

. (31)

The latter result [12] confirms the statement made earlier that
geminate rebinding in the model system becomes certain as
σu is decreased to σb. It also has the intuitively reasonable
property that φS decreases to zero as σu is increased to infinity.

4.5. Reversible reactions, numerical algorithm

The reaction rate for simulated reversible reactions was
computed numerically in nearly the same manner as for
irreversible reactions, although now for a series of σ ′

u

values, where σ ′
u = σu/σb. While the unbinding radius

cannot be less than the binding radius in the model system,
there is no such restriction for the numerical algorithm, so
these reduced reaction rates were computed as well. Back
reactions were included in the rate computation by evaluating
the flux of the RDF into the reduced binding radius with
equation (25), and transferring it to the RDF at the reduced
unbinding radius (figure 4(D)). Conceptually, this transferred
flux forms a Dirac delta function at σ ′

u after a reaction step. To
improve numerical accuracy, the delta function was diffused
separately and then added to the RDF one step later; a diffused
delta function is simply grn(r, σu, s). The reduced reaction
rates are shown with light lines in figure 6. They represent
kNr as functions of σb, σu and s, making them the numerical
algorithm equivalent of equation (30). Using an iterative
search routine, the function was inverted to solve for the
simulation parameters σb and σu from the experimentally
known values kr and φ.

Errors in these data are estimated to be less than 2.1%.
The numerical RDFs approached the analytical RDF in
equation (29) for short time steps and the ends of the curves
in figure 6 approach the limits found with equations (27)
and (30).

4.6. Bimolecular reactions with identical reactants

A final subtle point concerns the calculation of simulation
parameters for reactions with the form A + A → C. Using
the methods given above, the simulated reaction rate turns out
to be half as large as expected. The reason is that there are
nAnB possible distinct collisions for the reaction A + B → C,
whereas there are only nA(nA − 1)/2 distinct A–A collisions
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for A + A → C [36], where nA and nB are the total numbers
of A and B molecules. Assuming the experimental reaction
rate was measured with many reactant molecules, the factor
nA − 1 simplifies to just nA, leading to the factor of 2 of over-
counting. The easiest correction method is to simply double
all experimental rate constants for reactions with identical
reactants before calculating simulation parameters.

5. Analysis of simulated dynamics

Using the binding and unbinding radii derived above, reaction
rates with the bimolecular reaction algorithm will match
experimentally determined reaction rates for any system at
steady-state and using any length simulation time step. If
the geminate recombination probabilities are known or can
be guessed, simulation results will agree with them as well.
However, away from steady-state, reaction rates differ slightly
between reality and the model (the model treats all reactions
as though they are diffusion limited) and between the model
and the simulation. These issues are investigated here. It is
shown that the errors frequently offset each other such that
simulation results are actually closer to reality than the model
is. We also find a way to estimate the geminate recombination
probability from the reaction activation energy.

As seen in figure 4, the numerical RDF is discontinuous
at the binding radius, unlike the model result, but suggestive
of the RDF for the Collins and Kimball model [14, 17, 37].
This differs from the Smoluchowski model in that a reaction
does not always occur when reactants collide, but occurs at
a maximum reaction rate, as would arise from an activation
barrier at the binding radius. To accomplish this, the statement
that gS(r) = 0 at r = σb is replaced with the condition [29]:

∂gC(r)

∂r

∣∣∣∣
σb

= gC(σb)

γ
. (32)

The new subscript ‘C’ is used for the Collins and Kimball
model; to be rigorous, both sides of the equation are evaluated
at the limit of r → σ +

b . As mentioned previously, the
physical picture is complicated because each A–B pair that
collides once will almost certainly collide an infinite number of
times, implying that the reaction probability at each individual
collision is infinitesimal. Despite this, equation (3) can be
solved with the new boundary condition to yield the steady-
state RDF (figures 4(E) and (F )), the reaction rate constant for
irreversible [14] and reversible reactions, and the probability
of geminate recombination for reversible reactions:

gCi(r) = 1 − σ 2
b

r(σb + γ )
, r > σb (33)

kCi = 4πσ 2
b D

σb + γ
(34)

gCr(r) = 1 − σ 2
b (σu − r)

r
(
σuγ + σbσu − σ 2

b

) , σb < r < σu (35)

kCr = 4πσ 2
b σuD

σuγ + σbσu − σ 2
b

(36)

φC = σ 2
b

σu(σb + γ )
. (37)

The RDFs for the numerical algorithm are seen to be similar
to those of the Collins and Kimball model (figure 4).

Suppose the reactants are maintained in a well-mixed
state. This removes all diffusion effects from the reaction
rate, making it limited only by the activation energy. In the
Smoluchowski model, the discontinuity of this well-mixed
RDF at σb implies an infinite slope at σb and an infinite reaction
rate (using equation (17)). In contrast, the boundary condition
of the Collins and Kimball model enforces a slope of 1/γ at σb

and thence the activation-limited rate constant for the Collins
and Kimball model,

kCa = 4πσ 2
b Dγ −1. (38)

This rate constant is also called the intrinsic rate constant [37],
with the loose interpretation that it is the reaction rate for a
pair of molecules that are already in contact. Equations (36)
and (38) are simplified to highlight the relationship between
the Smoluchowski and Collins and Kimball models:

k−1
Ci = k−1

Si + k−1
Ca (39)

k−1
Cr = k−1

Sr + k−1
Ca . (40)

Along with the rest of the Collins and Kimball model,
these reaction rates vary smoothly between the Smoluchowski
description when γ → 0 and kCa → ∞, to a well-mixed
system when γ → ∞ and kCa → 0. The Collins and Kimball
model is a significant improvement to the Smoluchowski
model because it can capture a whole range of reaction types,
from diffusion limited to activation limited, while remaining
fundamentally simple.

An analogous activation-limited rate constant is calculated
for the numerical algorithm. A well-mixed RDF is diffused
over one simulation time step with equation (21) and the
reaction rate is found with equation (25) to yield

kNa�t

σ 3
b

= 4π

3

(
erfc

√
2

s ′ + s ′
√

2

π

)

+
2
√

2π

3
s ′(s ′2 − 1)(e−2/s ′2 − 1). (41)

This result approaches infinity as �t is reduced to zero and
the simulation approaches the Smoluchowski model, while
it becomes rate limiting with long time steps. Thus, �t is a
parameter in the numerical algorithm that adjusts the simulated
dynamics from diffusion limited to activation limited, much
as γ is a tunable parameter in the Collins and Kimball model.

The probabilities of geminate recombination form yet
another similarity. From equation (37) and the model
constraint that σu � σb, φC can decrease towards zero but
cannot exceed σb/(σb + γ ). Similarly, φN can be made
arbitrarily small by using a large unbinding radius but it has a
maximum value because the simulation σu cannot be decreased
below zero. As with the activation-limited rate constants, the
maximum φ values depend on γ for the Collins and Kimball
model and �t for the numerical algorithm.
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The upper limit on φC can be used to address an issue
that has been largely ignored up to this point: how is one
supposed to choose the unbinding radius for a simulation?
Using equation (28) and the curves in figure 6, it is possible
to calculate the simulation parameters σb and σu from
experimentally measured kr and φ values, provided that
geminate recombination data can be found. Unfortunately,
these data are nearly non-existent. A solution comes from
the Collins and Kimball model in which it is physically most
reasonable to set σu equal to σb and to limit the rate of geminate
reactions with an activation barrier:

φC = kCa

kCa + kSi

, σu = σb. (42)

The ‘C’ subscripts are retained here because the equation is
only strictly accurate with the approximations of the Collins
and Kimball model. However, the model is often a good
description of physical systems, so the relationship is also
likely to be reasonably accurate experimentally. If the
activation-limited rate constant can be estimated, equation (42)
yields φ, which can then be used to find σu for a simulation.

Recall that a simulation can be interpreted as periodic
observations of a virtual system that evolves continuously.
Also, an exact bimolecular reaction algorithm would use the
binding radius from the Smoluchowski model and would
consider a reaction as having occurred between a pair of
molecules if they had come closer than σb during a time step.
Analogous exact algorithms can be imagined for the Collins
and Kimball model or for any of several further improvements
to these classic models [18, 34, 38, 39]. While the simulation
does not reproduce any of them exactly, similarities with
the Collins and Kimball model include the profile of the
RDF, the activation energy and the geminate recombination
probability. This suggests that the simulated dynamics,
whether at steady-state or not, are likely to be reasonably
consistent with the behavior that would be observed with
the Collins and Kimball model. Of course, the simulation
time step applies to every reaction in a simulated reaction
network, so one cannot independently control the dynamics of
multiple reactions. However, this is unlikely to have practical
consequences because differences between steady-state and
non-steady-state reaction rates are so small that they are very
difficult to measure experimentally [32, 40].

6. Examples

6.1. Irreversible reaction

Our first example demonstrates that the algorithms can
accurately simulate bimolecular reactions at and away from
steady-state, using either diffusion-limited or activation-
limited dynamics. It is based on a recent experiment on the
kinetics of an acid–base reaction [32]. Starting with well-
mixed acid (AH) and base (B) molecules, the experiment was
initiated by photo-exciting the acid with a fast laser pulse.
An irreversible proton transfer occurred when an excited acid
molecule contacted a base molecule, with the reaction AH +
B → A + BH. Using transient fluorescence measurements
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Figure 7. Progress of a bimolecular acid–base reaction that starts as
a well-mixed system and approaches steady-state. The lower line is
the non-exponential Smoluchowski solution for diffusion-limited
dynamics (equation (43)) and the nearby solid circles are from a
diffusion-limited simulation. Parameters: DAH = 10−5 cm2 s−1,
DB = 0, volume = 106 nm3, [AH]0 = 3.3 × 10−3 M (2000
molecules), [B]0 = 0.2 M (120000 molecules), ki = 5.3 ×
109 M−1 s−1, ka = 5.1 × 1010 M−1 s−1, σb = 0.73 nm, s = 0.063 nm,
and �t = 0.002 ns (only every 20th point is shown for clarity);
runtime was 12 min on a Macintosh G4 laptop. The upper line is the
exponential solution for activation-limited reactions (equation (44))
and the nearby solid squares are from a more nearly activation-
limited simulation. Parameters are the same as before except ka =
6.5 × 109 M−1 s−2, σb = 1.81 nm, s = 2.0 nm, and �t = 2 ns;
runtime was 4 s.

of the acid, the authors showed that the reaction progress
was in close agreement with Smoluchowski dynamics (they
included the Debye–Hükel corrections that are required for
ionic species, although these had minimal effect due to high
salt concentrations). Using similar parameters as those in
the experiment, the lower line in figure 7 represents the
analytically derivable Smoluchowski result [14]:

[AH] = [AH]0 exp

[
−4πσbD[B]0

(
1 +

2σb√
πDt

)
t

]
. (43)

The curve has a very steep slope initially because the reactants
start well-mixed; then, it flattens out to a straight line on the
log-linear coordinates, as the system approaches steady-state.
Using the same diffusion coefficients and steady-state reaction
rate, the reaction was simulated with a very short time step to
make the simulated dynamics diffusion limited. Agreement
between theory and simulation is seen to be excellent at all
times, although stochastic effects become apparent when there
are few molecules.

The upper curve in figure 7 represents the theoretical
behavior for an activation-limited reaction, using the same
steady-state rate constant as before:

[AH] = [AH]0 exp(−k[B]0t). (44)

Using a long time step, the same simulation algorithm
accurately reproduced these activation-limited reaction
dynamics as well.

147



S S Andrews and D Bray

Note that there are no adjustable parameters in either
comparison. While it might be desirable to lower the
time resolution of the former simulation and raise it for the
latter one, this is impossible, because the length of the time
step determines whether simulated dynamics are diffusion or
activation limited. The diffusion-limited results satisfy the
stated goal, which was that the observable simulation dynamics
be as close as possible to the analytically derivable dynamics
of the model system, while the activation-limited dynamics go
an additional step, showing that it is also possible to simulate
reactions that are not described by the Smoluchowski model.

6.2. Lotka–Volterra system

To demonstrate the value of stochastic spatial simulations, we
turn to the canonical Lotka–Volterra system, which is a simple
scheme that yields interesting dynamics. The reactions are
[36]

X̄ + Y1
c1−→ 2Y1

Y1 + Y2
c2−→ 2Y2

Y2
c3−→ Z.

(45)

The bar over the X indicates that its concentration is held
constant. The system was introduced independently by Lotka
and Volterra as ecological models [41]: Y1 is a prey species
that multiplies after feeding on X, and Y2 is a predator species
that multiplies after feeding on the prey Y1. Analysis reveals
stable oscillations in the concentrations of Y1 and Y2 as well
as a neutrally stable stationary solution:

Y1 = c3

c2
Y2 = c1X

c2
. (46)

Using a simulation method that accounts for stochastic effects
but not space, Gillespie showed that the stochastic behavior
of these reactions is quite different from deterministic results
[36]. In particular, the system does not remain at the stationary
point, but develops regular oscillations with a widely varying
amplitude (dashed lines in figure 8(A)).

These reactions were simulated with the algorithms
presented here using the same rate constants and initial
condition, and with the Y1 and Y2 molecules distributed
randomly initially. Rather than including X molecules
explicitly, the first reaction was simulated as a unimolecular
reaction with a rate constant c1X = 10. Spontaneous
pattern formation emerged just after the simulation began, one
snapshot of which is shown in figure 8(B). This led to dynamics
that are markedly different from those found with either
deterministic results or the Gillespie algorithm. In the spatial
simulation, the oscillations are less regular, transitions are
sharper, and there are occasional extreme deviations away from
the steady-state solution. Many of these behaviors have been
seen before, although most prior results used continuously
variable reactant concentrations and/or a discrete spatial lattice
[42–44]. Thus, with each level of detail that is added to a
simulation, including first stochastics and then space, there
can be large effects on the resulting dynamics of the system as
a whole.
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Figure 8. Dynamics of a Lotka–Volterra system. (A) Time course of
the number of Y1 molecules shown with three different models. The
black line at Y1 = 1000 is the deterministic solution for the neutrally
stable stationary point; the green dashed line, created with the
Gillespie algorithm, includes stochasticity but no spatial
information; the red solid line, created with the algorithms presented
here, includes both stochasticity and spatial detail. Note that the
behaviors are quite different for the three models, demonstrating the
value of the higher level of detail. Inset: a phase space portrait of
the data shown in the time series using the same line styles; the
deterministic solution is a point at Y1 = Y2 = 1000. (B) A snapshot
of the spatial simulation shown in the previous panels, with blue
dots for Y1 molecules and green ‘+’ symbols for Y2. This image was
taken at time 2.6, which was during a sharp decline of Y1 and a
growth of Y2, where most of this activity is occurring in the upper
left corner of the image. The high degree of pattern formation
emerged spontaneously from a nearly homogeneous initial state and
was very transient. Reaction parameters: X = 105, c1 = 0.0001,
c2 = 0.01, c3 = 10, and initial values are Y1 = Y2 = 1000.
Simulation parameters: volume dimensions are 200 on x and y,
and 20 on z, with periodic boundaries, 10 units of time were
simulated in steps of 0.001 time units, and diffusion constants are
100 for each Y1 and Y2, leading to rms step lengths of 0.447.
The Y1 + Y2 reaction was simulated with σb = 3.55. Runtime
was 70 s.
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7. Conclusions and outlook

The algorithms presented here allow the accurate simulation
of reaction networks with the inclusion of the stochasticity
that arises from the discreteness of molecules and with spatial
detail that can be accurate down to near the size scale of
individual molecules. Simulation algorithms for diffusion,
surface interactions and zeroth- and first-order reactions could
be made exact, meaning that simulation results were shown to
match the analytical results of an idealized model system using
any length simulation time step. However, long time steps
lead to discrepancies when different processes are coupled
together. Bimolecular reactions were made as efficient as
possible using the rule that two molecules react whenever they
are found to be within their binding radius at the end of a
time step. This parameter is calculated from the steady-state
reaction rate constant and the simulation time step using the
data in figure 6, yielding reaction rates that are exact when the
system is at steady-state and are reasonably accurate at other
times. The simulated reaction dynamics are similar to those
of a Collins and Kimball type model and, likewise, can be
characterized as diffusion or activation limited.

The examples demonstrate that these simulation
algorithms work well in practice. Bimolecular reaction rates
are simulated accurately at and away from steady-state with
either activation- or diffusion-limited dynamics. Various
levels of simulation detail with the Lotka–Volterra reactions
demonstrate that the overall dynamics of a system of coupled
reactions can be sensitive to stochastic and spatial effects.
The algorithms run quickly enough that these examples were
simulated on a laptop computer in several minutes.

These algorithms open up new avenues of research,
allowing simulation detail at a level that was previously
unattainable. They fill a gap between the more accurate
and very computationally intensive molecular dynamics
calculations, and the much coarser differential equation based
reaction–diffusion methods. They are likely to be most useful
for systems with several thousand molecules and with complex
spatial constraints. For example, our Smoldyn program is
currently being used to examine the diffusion and reaction
of signaling molecules in the E. coli chemotaxis pathway,
including effects from intracellular macromolecular crowding
[23]. We also used these methods to investigate the repeated
bindings of a single ligand to a cluster of receptors [24].

An additional algorithm that would be useful is one for
simulations of molecule–fiber interactions, because that would
allow studies of polymer growth, microtubule dynamics, DNA
transcription and RNA translation, to name but a few examples.
With this addition, and perhaps a few others, it should be
possible to simulate essentially any biochemical process using
individual molecules and a high level of spatial resolution. At
that point, the hurdles to simulating an entire bacterium are
computational power and experimentally determined inputs
for the simulation.

Supporting information. Implementation of the bimolecular reaction
algorithm presented here requires a look-up table for the data shown in
figure 6. These data are available via the Internet at the Physical Biology
website at http://www.iop.org/EJ/journal/physbio. They are presented in
tabular form and in the code of several C language routines. The routines

execute data interpolation, extrapolation and tabular inversion so as to yield
simulation parameters from experimental values. The C code that was used to
generate the data table is included as well. The Smoldyn executable program,
source code, and sample input files are available at the author’s website:
http://sahara.lbl.gov/∼sandrews/software.html.
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Appendix. Implementation details

A.1. Diffusion

In the diffusion algorithm, a uniformly distributed random
number is converted to a normally distributed number for each
spatial dimension, for each molecule, and at every time step.
The Box–Muller transformation [35] is easy to implement but
the required trigonometric calculations make this heavily used
algorithm run slowly. Instead, the use of a look-up table is
nearly as accurate and runs much faster. To create an n element
look-up table, indexed from 0 to n − 1, the ith element is

Xi =
√

2 erf−1

(
2i + 1

n
− 1

)
. (A1)

If i is a random integer between 0 and n−1, Xi is a normally
distributed random variable with standard deviation 1, and
σXi is the desired normal deviate with mean 0 and standard
deviation σ . This equation is derived by integrating a Gaussian
probability density with unit variance to yield an error function
and then inverting the result [35]. A table is not quite as
accurate as an analytical transformation because there are
typically fewer table entries than available random numbers
although this is not a significant constraint for Brownian
dynamics because the number of possible displacements for
each molecule is the cube of the number of table entries for
a three-dimensional system with one time step, and increases
exponentially with additional time steps.

A.2. Surface interactions

Surface interactions are sufficiently easy to simulate that they
are described in the main text. The one exception is that
spatial partitions, described below, can be used to minimize
the number of molecule–surface interactions that need to be
checked.

A.3. Zeroth-order reactions

During one time step, the probability that exactly j molecules
of type A are produced is given with a Poisson distribution
[28]:

Prob(j) = (k0�t)j exp(−k0�t)

j !
. (A2)
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This can be computed easily with a rejection method [35].
Some computational efficiency can be gained by calculating
the required probabilities during program initialization and
storing them in look-up tables (one for each zeroth-order
reaction). However, the overall improvement in speed is
typically negligible because only one Poisson deviate is
required for each zeroth-order reaction at each time step.

A.4. Unimolecular reactions

Rather than re-calculating the reaction probabilities given in
equation (14) at each time step, it is faster to calculate them just
once for each possible unimolecular reaction during program
initialization. Additional computational efficiency is gained
by summing these probabilities. Using i as an index for a
pathway by which a molecule can undergo a unimolecular
reaction, the reaction probabilities for pathway 1 to i are
summed to form a list of cumulative reaction probabilities. At
each time step during the simulation, a specific molecule reacts
by pathway i if a uniform deviate is less than the ith stored
cumulative probability value and greater than the preceding
value.

A.5. Bimolecular reactions

Although it complicates the implementation, spatially
partitioning the simulation volume [10, 45] is essential to
reduce the proportionality of the runtime for bimolecular
reactions from second order in the total number of molecules
to first order. To do this, the program maintains a separate
list of the molecules for each region. When checking for
bimolecular reactions, the program only needs to investigate
pairs of molecules that are in the same or neighboring regions.
In the same way, partitions also speed up the simulation of
surface interactions.

A.6. Simulation time step

Discrepancies between the simulated dynamics and those of
the model system arise from the following: spatial resolution
that cannot exceed the rms step length (figure 1), bimolecular
reaction dynamics that are closer to the Collins and Kimball
model than the Smoluchowski model, and the coupling of
molecular processes. The last error is very difficult to
analyze, so we present a practical rule-of-thumb instead. A
simulation is run with a trial time step that is short enough
to yield the needed spatial resolution and again with a time
step that is half as long. The longer time step is short
enough if the results between the two runs are essentially
the same (recalling that they will always differ somewhat due
to stochasticity); otherwise, the time step needs to be reduced.
This works because all errors decrease monotonically with
smaller simulation time steps.

Glossary

Activation limited. Chemical reactions in which the reaction
rate is fully determined by an activation energy barrier,
making the reactant diffusion coefficients unimportant.

Binding radius. The separation at which a pair of reactant
molecules react.

Brownian dynamics. A simulation method for molecular
diffusion in which each molecule takes a step chosen from a
Gaussian distribution, at each time step.

Brownian motion. Diffusive motion of a molecule that has
been idealized to obey Fick’s laws at all size and time scales,
leading to an infinitely detailed trajectory.

Collins and Kimball model. An extension of the
Smoluchowski model that includes an activation energy
barrier for bimolecular reactions.

Diffusion influenced. Chemical reactions in which reactant
diffusion is slow enough to influence the reaction rate.

Diffusion limited. Chemical reactions in which reactant
diffusion is so slow that it completely determines the reaction
rate.

Geminate recombination. The reaction of a pair of product
molecules that were created from the same reactant molecule,
back to yield a reactant.

Mutual diffusion coefficient. The sum of the diffusion
coefficients for two reactants.

Mutual rms step length. The rms step length that is
calculated from a mutual diffusion coefficient.

Radial distribution function (RDF). The distribution of
distances between individual molecules of one type and those
of another type, averaged over every pair of molecules.

Root mean square (rms) step length. The average length of a
step for a molecule in a Brownian dynamics simulation.

Smoldyn. A general purpose stochastic spatial simulation
program that incorporates all the algorithms described here.

Smoluchowski model. An analytical model of chemical
reactions in which spherical molecules react upon collision.

Steady-state. A situation in which neither the spatial
correlation of reactants nor the bimolecular reaction rate
constant changes over time.

Unbinding radius. The initial separation between a pair of
products of a reversible reaction, introduced to reduce the
probability of back reactions.

Well mixed. A situation in which reactant molecules are
mixed uniformly throughout the simulation volume; the only
spatial correlation is that reactants do not overlap each other.
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[42] Vilar J M G and Solé R V 1998 Phys. Rev. Lett. 80 4099
[43] Spagnolo B and Barbera A L 2002 Physica A 315 114
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